CHARACTERISATION AND MODELLING OF AGING OF COMPOSITES

Créé le : 14/09/2010 - Mis à jour le : 15/11/2012

The aim of this study was to better understand the aging of glass fibre-epoxy composites exposed to humid conditions and loading so as to predict its effects on the lifetimes of composite structures. Water diffusion in the material was initially determined by gravimetric methods under different conditions of relative humidity (r.h.) conditions. A fickian model of diffusion could describe the results obtained. The specimens, saturated at different levels, were mechanically characterised and tensile strengths and shear moduli were seen to decrease with water uptake. The effects of matrix cracking of the laminate on water absorption and its mechanical properties have also been studied. Differences between reversible and irreversible changes in properties were revealed and analysed in detail. A predictive model has been proposed by considering different sections throughout the thickness of the material. As a first step in modelling the diffusion process, the non-uniform water distribution across the composite for any conditions (temperature, humidity, aging time) are determined. The resulting mechanical properties of the material, as a function of the absorbed water concentration, are determined in each point. The model which is proposed enables the global behaviour of composite to be determined, at all stages of water absorption and matrix cracking, by calculating behaviour in each section of the composite through its thickness.