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Abstract The Eshelby stress tensor is known to be an appropriate itaumti Me-
chanics quantity to capture singularities. Neverthelesen if its use in the cal-
culation of configurational forces is well-established, peculiar properties were
investigated only recently. Here, some new propertiesisfténsor are studied. In
this way, it is assumed that the evolution of microscopiedef in the material can
be predicted at the macroscopic scale by examining the coemts of the Eshelby
stress tensor. More precisely, considering that defectdeamodeled by material
surfaces oriented in all possible directions and assunhiaicthey are able to evolve
in every possible directions, it is shown that the maximunoant of energy which
can be released by defects evolution is partially containede tensor. In the spe-
cial case of hyperelasticity, the corresponding optiniiraproblem is established
and solved for both isotropic and anisotropic materials.

1 Introduction

The theory of Configurational Mechanics was introduced blyeltsy in [4] when

he proposed the concept of energy-momentum tensor and caatf@pal forces
in continuum mechanics of solids by studying the drivingcéoof a moving de-
fect. Twenty years later, both Eshelby [5] and Chadwick j@kaded the previous
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theory to finite strain. More recently some authors revisiteese studies and estab-
lished the general framework of Configurational Mechanlss designated as the
Eshelbian Mechanics and Mechanics in the Material Spacelp,16, 9].

In the majority of studies involving Configurational Meclas) only configura-
tional forces are investigated through the calculationathgndependent integrals
around inhomogeneities, because these forces are reedgmszthe driving forces
of defect evolution. So, the Eshelby stress tensor only @spi@ the definition of
surface tractions, i.e. after contraction with the outwawdnal of the contour. Most
of these works focus on Fracture Mechanics (see for examsleand the refer-
ences herein). Moreover, as proposed in [10], other prablgan be analyzed with
the help of the Eshelbian framework: dislocations in metedyement of interfaces
in two-phase bodies, etc. Opposite to the case of configualtiforces, only few
studies are concerned with the peculiar properties of tinelBg stress tensor. As
an example, for the linear theory, the physical significaoicthe Cartesian com-
ponents of this tensor were identified only recently by Klenand Herrmann [8].
More recently, Verron and co-workers proposed to use sommgpooents of the Es-
helby stress tensor to predict fatigue damage in elastorb@rd, 17].

By generalizing and rationalizing the derivation propogedl7], the present
paper will examine some properties of the Eshelby stressotein this way, the
evolution of the microstructure of a given material will keidied by considering
the evolution of oriented material surfaces under loadiing: approach will exhibit
the relevance of the polar decomposition of the tensor afidedthe significance of
this decomposition with regards to microstructural eviolutFinally, this work will
be illustrated by considering the extension of a transWeisetropic hyperelastic
strip.

2 Evolution of microstructural defects by considering the
Eshelby stresstensor

2.1 Formulation of the problem

Consider a body defined by its reference configuratién), i.e. a set of particles
in the material manifold#?; it is depicted in Figure 1. One particReof this set is
located afX in the physical spac&®. Under mechanical loading, the body deforms
and occupies a time sequence of physical configurationgJ)nLet (¢) be the
body configuration at timé¢ defined by the mapping(X,t) and by its gradient
F(X,t). As shown in Fig. 1, when loading is removed the body will, Bngral,
occupy a new stress-free configuraticff;) defined by the motion gradiefitx,t).
Both configurationg4r) and (4%) represeninatural configurations of the body
[14]. The physical reasons for a body to possess differetutralaconfigurations
can be very diverse. Indeed, it is the consequence of stalagearrangements at
the microscopic scale, e.g. movement of dislocationsta@wn, cleavage fracture,
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Fig. 1 Deformation of a
body: macroscopic scale

which manifests in various ways at the mesoscopic scale ptagticity, damage;
or at the macroscopic scale, e.g. crack growth. If the nedteriperfectly elastic,
f = F~1 and the natural configuratioir) and(%}) are identical. Nevertheless, if
irreversible microstructural changes take place duriegiotion, the gradieritcan
be considered close, but not equalFto'.

In the latter case, this slight change of configuration isrtfeeroscopic coun-
terpart of a microstructural evolution. In order to il this change, the Rep-
resentary Volume Element (RVE) which is phenomenologjcathbedded in the
particleP should be considered. The following idealized represamtatf the RVE
is adopted: it contains both bulk material and various dsfetich are schematized
by oriented material surfaces as shown in Figure 2. The$acas, which can repre-
sent for example microscopic cracks, are defined by themabvectorN and it is
assumed that their orientations are isotropically digtad. Under motion, the size
and shape of the RVE (see the grey square in Fig. 2) do not eh#imgmicrostruc-
tural rearrangement does not change the definition of the, R¢Eat the Contin-
uum Mechanics scale, the motion is reversible. Nevertbelbe defects deform
reversibly or irreversibly, and in the latter case the nstmactural rearrangement
leads to the definition of the new reference configuratigf) in Figs 1 and 2.

As advocated in [3, 13], the Eshelby stress terisas the driving force which
governs local structural rearrangement. This tensor ineefoy

S =WI-FP, 1)

whereW is the strain energy density per unit of undeformed volumekva priori
depends on botk andX, P is the Piola-Kirchhoff stress tensor aridienotes the
transposition. To quantify the energy change involvedrdythe rearrangement, we
consider that a given material surface (defined by its urnitab vectorN) is sub-
jected to a material unit translatighbetween the natural configuratiofisr) and
(¢%) as shown in Figure 3. In 1997, Kienzler and Herrmann identifies physical
significance of the components of the Eshelby stress tengbeilinear context [8]:
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Fig. 2 Idealized microstruc-
tural change in the RVE

Fig. 3 Evolution of the de-
fects modeled by oriented
material surfaces

“[theij-componeritof the Eshelby tensor is the change in the total energy densit
at a point of an elastic continuum due to a material unit tegim inx; direction of

a unit surface with normal ir;-direction”. Extending this definition to finite strain
and to arbitrary direction, it can be established that tlades® - >N represents the
change of energy due to the evolution of the material suidafieed by the unit nor-
mal vectorN and the material unit translatighbetween the natural configurations
(¢r) and(6R)-

To go further in the derivation, a strong assumption is aglbpit is considered
that the microstructural change is only due to the evolutibanly one set of sur-
faces (only one orientation of defects, i.e. only one vebipin only one material
translation (only one vectd) such that the body reduces as much as possible its
total energy. Recalling that energy changes are definetiyagiin 2, the problem
reduces to the following constraint optimization problem:

rn%xe-(—Z)N (2)
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with two equality constraints
IN[[=1, [[6] =1, ©)
and two inequality constraints
N-6>0, 6-(—X)N>0. 4)

The two equality constraints Eq. (3) specify that both themwad vector to the ma-
terial surface and the material translation vector are waitors. The inequality
constraints Eq. (4) express that the microscopic defect®nly open: Eq. (4)en-
sures thalN and @ are in the same semi-plan, Eq. {&nsures that energy can only
decrease due to defects evolution. Finally, the scalar uneas the damage™ can
be chosen as the maximum of the funct®n(—X) N.

Remark. The quantity>* which solves the optimization problem represents the
energy involved in the evolution of the oriented materiaface (with normalN).
The assumptions required to use the Eshelby stress tenidis tontext are(i) the
size of defects is very small compared with the size of the RAfl(ii) the density

of defects is also very small, i.e. defects do not interdechdans that this approach
is able to localize the damage in the material, but can notsee to calculate the
energy release rate of defects because such a quantityushyvincludes the size of
defects.

2.2 Mathematical solution

2.2.1 Special case of an isotropic elastic material

As shown in [3], the Eshelby stress tensor satisfies theviioligp symmetry condi-
tion:
sC=cCcs!, (5)

whereC is the right Cauchy-Green strain tensor. Moreover, raualihat> can be
written in terms ofC and of the second Piola-Kirchhoff stress tenSor

S=WI-CS (6)

and noting that in the special case of isotropic elasti€itgnd S are coaxial and
commute, the Eshelby stress tensor is symmetric

So, 2 being a symmetric tensor, it possesses three real eigesvalenoted
(Zi)i—1,3 and their corresponding eigenvectgk4 );_, 3 which are orthogonal one
to each other. In this case, the solution of the optimizapiablem reduces to:

>t = ‘min ((zi)i:l_z?g,o)‘ (7)
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and if >* #£ 0,
N=6=V" (8)

which is the eigenvector associated witlx *. In this case, the defects with normal
V* will grow by extending in a plane orthogonal Yo'

2.2.2 General case

More generally, the Eshelby stress tensor is not symmétooly satisfies Eq. (5).
In order to solve the optimization problem, we consider thhtrpolar decomposi-
tion of >:

=Ty, 9)

wherel" is an orthogonal tensor (a reflection or a rotation tensoedéimg on the
sign of its determinant) an¥ is a positive definite symmetric tensor (wh&nis
invertible). These tensors are defined by

Y=vzlZ and r=sy L (10)
In this case the solution vectors are
N=V* and =TIV~ (11)

whereV* is the eigenvector associated with the largest eigenvdllé d¢f these
vectors are not in the same semi-plan, i.e. if they do nasfyaiq. (4), the solution
of the whole optimization problem (with constraints) Ed&4] is equal to 0 sim-
ilarly to Eq. (7). Otherwise, the maximum of the functién (—X) N is the largest
eigenvalue ot

St— max((»{)i:m) . (12)

In this case, the defects with norméi will grow by extending (and being distorted)
in a plane of normal V*.

3 Example

First, the case in which the Eshelby stress tensor is synuretid which corre-
sponds to isotropic elasticity was recently examined if.[Anthors applied this
result to the problem of fatigue loading of rubber materiélsing Eq. (7), they
derived a new predictor for rubber fatigue and they dematedrits ability to re-
produce multiaxial loading conditions and to predict macapic fatigue crack ori-
entation.

So, the following example will focus on the second resultivibel in Section
2.2.2, Egs (11-12). We consider the simple problem of uaiazitension of a trans-
versely isotropic hyperelastic strip. More precisely, piheblem consists in extend-
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ing a rubber-like thin strip reinforced with long fibers aried in a given direc-
tion ap, as shown in Figure 4. The angle between the fiber directienag, and

€7

€]

Fig. 4 Extension of a rein-
forced fiber elastic strip.

the loading direction, i.ee, is denoteda. Following the work of Spencer [15],
the strain energy density per unit of undeformed volume foomogeneous trans-
versely isotropic materidV can be written as a function of five invariants: the three
classical isotropic invariants

I, =trC |2:%{(trc:)2—trc?} , 13 = deC, (13)
and two additional invariants
la=tr(C:A) , Is=tr(C*:A), (14)

whereA is the orientation tensap ® ag. Here, the simplest transversely isotropic
rubber-like constitutive equation is adopted: the makésiaonsidered incompress-
ible (I3 = 1) and the strain energy density is assumed to only dependis amd
I4

W (C,a0) =Ci (11— 3) +C4 (I4 — 1)?, (15)

where the two material parameters were s€ljte- 1 andC, = 2 in order to empha-
size the effect of fibers. In the special cases for which thdiltg direction is parallel
(a = 0°) or perpendiculardg = 90°) to the fiber direction, a given extension can be
prescribed and the problem can be solved analytically @eexample [7]). Never-
theless, for other fiber orientations the finite element im@&hould be considered;
here we used the software COMSOL Multiphysics. Computatiare performed
by considering only half of the strip (symmetry with respezthe x; = 0-axis),
the plane stress assumption is adopted (the incompréiysidnhstraint leads to a
change in thickness of the strip) and the strip is extendearéscribing the forcé

in order to obtain an uniform deformation gradient in the lersdrip.

Practically, for a given extension ratlg simulations with prescribed fordeare
conducted to determine the value of the force suchRhat A. To show quantita-
tive results we plot the evolution of the directionswof (normal vector to the critical
material plane) and V* (material direction of evolution) with respect to the fiber
directions in Figure 5. It is to note that for both= 0° anda = 90°, even if the
material is not isotropic, the deformation gradient is diagl and then the Eshelby
stress tensor is symmetric. Thus the problem reduces tqtwas case studied in
Section 2.2.1; the normal vector to the material surfacdsl@normal to the plane
in which they will grow are identical. In other cases, theg different.
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Fig. 5 (e) Orientation of the critical material plane which could @de the maximum of energy:

(W). (d) Orientation of the corresponding material transla(m*). Left-hand side graph:
A = 2; right-hand side graptx = 4.

Finally, Figure 6 shows some qualitative results obtaireddur fiber orienta-
tions. This figure illustrates with simple sketches foutticatar quantitative results

Fig. 6 A = 4-extension of
a transversaly isotropic hy-
perelastic strip: (ay = 0°,
(b) a =30°, (c) a = 60° and
(d) o =90°.

given in Fig. 5: forA = 4, it exhibits the orientation of the critical material sacés
(V*) and the direction of the material translatian\(*) for four fiber orientation
angles.

4 Discussion

The present paper is only a second step towards the undgirgjasf the physical
significance of the Eshelby stress tensor components,thftarne of Kienzler and
Herrmann. The relevance of the polar decomposition of theelby stress tensor
was demonstrated by considering that this tensor is théndrferce of microstruc-
tural evolution. For an idealized RVE, it was shown that tharé material stress
tensor”Y can be considered as a measure of the microstructural daamagef
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the direction of defects that will grow, and also that thetdtmnal material stress
tensor”l” contains the way these defects will evolve.
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