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Abstract The Eshelby stress tensor is known to be an appropriate Continuum Me-
chanics quantity to capture singularities. Nevertheless,even if its use in the cal-
culation of configurational forces is well-established, its peculiar properties were
investigated only recently. Here, some new properties of this tensor are studied. In
this way, it is assumed that the evolution of microscopic defects in the material can
be predicted at the macroscopic scale by examining the components of the Eshelby
stress tensor. More precisely, considering that defects can be modeled by material
surfaces oriented in all possible directions and assuming that they are able to evolve
in every possible directions, it is shown that the maximum amount of energy which
can be released by defects evolution is partially containedin the tensor. In the spe-
cial case of hyperelasticity, the corresponding optimization problem is established
and solved for both isotropic and anisotropic materials.

1 Introduction

The theory of Configurational Mechanics was introduced by Eshelby in [4] when
he proposed the concept of energy-momentum tensor and configurational forces
in continuum mechanics of solids by studying the driving force of a moving de-
fect. Twenty years later, both Eshelby [5] and Chadwick [2] extended the previous
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theory to finite strain. More recently some authors revisited these studies and estab-
lished the general framework of Configurational Mechanics also designated as the
Eshelbian Mechanics and Mechanics in the Material Space [11, 12, 6, 9].

In the majority of studies involving Configurational Mechanics, only configura-
tional forces are investigated through the calculation of path-independent integrals
around inhomogeneities, because these forces are recognized as the driving forces
of defect evolution. So, the Eshelby stress tensor only appears in the definition of
surface tractions, i.e. after contraction with the outwardnormal of the contour. Most
of these works focus on Fracture Mechanics (see for example [16] and the refer-
ences herein). Moreover, as proposed in [10], other problems can be analyzed with
the help of the Eshelbian framework: dislocations in metal,movement of interfaces
in two-phase bodies, etc. Opposite to the case of configurational forces, only few
studies are concerned with the peculiar properties of the Eshelby stress tensor. As
an example, for the linear theory, the physical significanceof the Cartesian com-
ponents of this tensor were identified only recently by Kienzler and Herrmann [8].
More recently, Verron and co-workers proposed to use some components of the Es-
helby stress tensor to predict fatigue damage in elastomers[18, 1, 17].

By generalizing and rationalizing the derivation proposedin [17], the present
paper will examine some properties of the Eshelby stress tensor. In this way, the
evolution of the microstructure of a given material will be studied by considering
the evolution of oriented material surfaces under loading.The approach will exhibit
the relevance of the polar decomposition of the tensor and define the significance of
this decomposition with regards to microstructural evolution. Finally, this work will
be illustrated by considering the extension of a transversely isotropic hyperelastic
strip.

2 Evolution of microstructural defects by considering the
Eshelby stress tensor

2.1 Formulation of the problem

Consider a body defined by its reference configuration(CR), i.e. a set of particles
in the material manifoldM 3; it is depicted in Figure 1. One particleP of this set is
located atX in the physical spaceE 3. Under mechanical loading, the body deforms
and occupies a time sequence of physical configurations (inE 3). Let (C ) be the
body configuration at timet defined by the mappingx(X, t) and by its gradient
F(X, t). As shown in Fig. 1, when loading is removed the body will, in general,
occupy a new stress-free configuration(C ′

R) defined by the motion gradientf(x, t).
Both configurations(CR) and (C ′

R) representnatural configurations of the body
[14]. The physical reasons for a body to possess different natural configurations
can be very diverse. Indeed, it is the consequence of structural rearrangements at
the microscopic scale, e.g. movement of dislocations, cavitation, cleavage fracture,
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Fig. 1 Deformation of a
body: macroscopic scale

which manifests in various ways at the mesoscopic scale, e.g. plasticity, damage;
or at the macroscopic scale, e.g. crack growth. If the material is perfectly elastic,
f = F−1 and the natural configurations(CR) and(C ′

R) are identical. Nevertheless, if
irreversible microstructural changes take place during the motion, the gradientf can
be considered close, but not equal, toF−1.

In the latter case, this slight change of configuration is themacroscopic coun-
terpart of a microstructural evolution. In order to illustrate this change, the Rep-
resentary Volume Element (RVE) which is phenomenologically embedded in the
particleP should be considered. The following idealized representation of the RVE
is adopted: it contains both bulk material and various defects which are schematized
by oriented material surfaces as shown in Figure 2. These surfaces, which can repre-
sent for example microscopic cracks, are defined by their normal vectorN and it is
assumed that their orientations are isotropically distributed. Under motion, the size
and shape of the RVE (see the grey square in Fig. 2) do not change: the microstruc-
tural rearrangement does not change the definition of the RVE, i.e. at the Contin-
uum Mechanics scale, the motion is reversible. Nevertheless, the defects deform
reversibly or irreversibly, and in the latter case the microstructural rearrangement
leads to the definition of the new reference configuration(C ′

R) in Figs 1 and 2.
As advocated in [3, 13], the Eshelby stress tensorΣ is the driving force which

governs local structural rearrangement. This tensor is defined by

Σ = W I−FtP , (1)

whereW is the strain energy density per unit of undeformed volume which a priori
depends on bothF andX, P is the Piola-Kirchhoff stress tensor and·t denotes the
transposition. To quantify the energy change involved during the rearrangement, we
consider that a given material surface (defined by its unit normal vectorN) is sub-
jected to a material unit translationθ between the natural configurations(CR) and
(C ′

R) as shown in Figure 3. In 1997, Kienzler and Herrmann identified the physical
significance of the components of the Eshelby stress tensor in the linear context [8]:
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Fig. 2 Idealized microstruc-
tural change in the RVE

Fig. 3 Evolution of the de-
fects modeled by oriented
material surfaces

“ [the i j-component] of the Eshelby tensor is the change in the total energy density
at a point of an elastic continuum due to a material unit translation inx j direction of
a unit surface with normal inxi-direction”. Extending this definition to finite strain
and to arbitrary direction, it can be established that the scalarθ ·ΣN represents the
change of energy due to the evolution of the material surfacedefined by the unit nor-
mal vectorN and the material unit translationθ between the natural configurations
(CR) and(C ′

R).
To go further in the derivation, a strong assumption is adopted: it is considered

that the microstructural change is only due to the evolutionof only one set of sur-
faces (only one orientation of defects, i.e. only one vectorN) in only one material
translation (only one vectorθ ) such that the body reduces as much as possible its
total energy. Recalling that energy changes are defined positively in Σ , the problem
reduces to the following constraint optimization problem:

max
N,θ

θ · (−Σ)N (2)
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with two equality constraints

‖N‖ = 1 , ‖θ‖ = 1, (3)

and two inequality constraints

N ·θ ≥ 0 , θ · (−Σ)N ≥ 0. (4)

The two equality constraints Eq. (3) specify that both the normal vector to the ma-
terial surface and the material translation vector are unitvectors. The inequality
constraints Eq. (4) express that the microscopic defects can only open: Eq. (4)1 en-
sures thatN andθ are in the same semi-plan, Eq. (4)2 ensures that energy can only
decrease due to defects evolution. Finally, the scalar measure of the damageΣ ∗ can
be chosen as the maximum of the functionθ · (−Σ)N.

Remark. The quantityΣ ∗ which solves the optimization problem represents the
energy involved in the evolution of the oriented material surface (with normalN).
The assumptions required to use the Eshelby stress tensor inthis context are:(i) the
size of defects is very small compared with the size of the RVE, and(ii) the density
of defects is also very small, i.e. defects do not interact. It means that this approach
is able to localize the damage in the material, but can not be used to calculate the
energy release rate of defects because such a quantity obviously includes the size of
defects.

2.2 Mathematical solution

2.2.1 Special case of an isotropic elastic material

As shown in [3], the Eshelby stress tensor satisfies the following symmetry condi-
tion:

ΣC = CΣ t
, (5)

whereC is the right Cauchy-Green strain tensor. Moreover, recalling thatΣ can be
written in terms ofC and of the second Piola-Kirchhoff stress tensorS,

Σ = W I−CS (6)

and noting that in the special case of isotropic elasticityC andS are coaxial and
commute, the Eshelby stress tensor is symmetric.

So, Σ being a symmetric tensor, it possesses three real eigenvalues denoted
(Σi)i=1,3 and their corresponding eigenvectors(Vi)i=1,3 which are orthogonal one
to each other. In this case, the solution of the optimizationproblem reduces to:

Σ ∗ =
∣

∣

∣
min

(

(Σi)i=1,2,3 ,0
)∣

∣

∣
(7)
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and if Σ ∗ 6= 0,
N = θ = V∗

, (8)

which is the eigenvector associated with−Σ ∗. In this case, the defects with normal
V∗ will grow by extending in a plane orthogonal toV∗.

2.2.2 General case

More generally, the Eshelby stress tensor is not symmetric,it only satisfies Eq. (5).
In order to solve the optimization problem, we consider the right polar decomposi-
tion of Σ :

Σ = Γϒ , (9)

whereΓ is an orthogonal tensor (a reflection or a rotation tensor depending on the
sign of its determinant) andϒ is a positive definite symmetric tensor (whenΣ is
invertible). These tensors are defined by

ϒ =
√

Σ t Σ and Γ = Σϒ−1
. (10)

In this case the solution vectors are

N = V∗ and θ = Γ V∗ (11)

whereV∗ is the eigenvector associated with the largest eigenvalue of ϒ . If these
vectors are not in the same semi-plan, i.e. if they do not satisfy Eq. (4)1, the solution
of the whole optimization problem (with constraints) Eqs. (2-4) is equal to 0 sim-
ilarly to Eq. (7). Otherwise, the maximum of the functionθ · (−Σ)N is the largest
eigenvalue ofϒ :

Σ ∗ = max
(

(ϒi)i=1,3

)

. (12)

In this case, the defects with normalV∗ will grow by extending (and being distorted)
in a plane of normalΓ V∗.

3 Example

First, the case in which the Eshelby stress tensor is symmetric and which corre-
sponds to isotropic elasticity was recently examined in [17]. Authors applied this
result to the problem of fatigue loading of rubber materials. Using Eq. (7), they
derived a new predictor for rubber fatigue and they demonstrated its ability to re-
produce multiaxial loading conditions and to predict macroscopic fatigue crack ori-
entation.

So, the following example will focus on the second result derived in Section
2.2.2, Eqs (11-12). We consider the simple problem of uniaxial extension of a trans-
versely isotropic hyperelastic strip. More precisely, theproblem consists in extend-
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ing a rubber-like thin strip reinforced with long fibers oriented in a given direc-
tion a0, as shown in Figure 4. The angle between the fiber direction, i.e. a0, and

Fig. 4 Extension of a rein-
forced fiber elastic strip.

the loading direction, i.e.e1, is denotedα. Following the work of Spencer [15],
the strain energy density per unit of undeformed volume for ahomogeneous trans-
versely isotropic materialW can be written as a function of five invariants: the three
classical isotropic invariants

I1 = trC , I2 =
1
2

[

(trC)2− trC2
]

, I3 = detC, (13)

and two additional invariants

I4 = tr(C : A) , I5 = tr
(

C2 : A
)

, (14)

whereA is the orientation tensora0⊗ a0. Here, the simplest transversely isotropic
rubber-like constitutive equation is adopted: the material is considered incompress-
ible (I3 = 1) and the strain energy density is assumed to only depends onI1 and
I4

W (C,a0) = C1 (I1−3)+C4 (I4−1)2
, (15)

where the two material parameters were set toC1 = 1 andC4 = 2 in order to empha-
size the effect of fibers. In the special cases for which the loading direction is parallel
(α = 0◦) or perpendicular (α = 90◦) to the fiber direction, a given extension can be
prescribed and the problem can be solved analytically (see for example [7]). Never-
theless, for other fiber orientations the finite element method should be considered;
here we used the software COMSOL Multiphysics. Computations are performed
by considering only half of the strip (symmetry with respectto the x1 = 0-axis),
the plane stress assumption is adopted (the incompressibility constraint leads to a
change in thickness of the strip) and the strip is extended byprescribing the forcef
in order to obtain an uniform deformation gradient in the whole strip.

Practically, for a given extension ratioλ , simulations with prescribed forcef are
conducted to determine the value of the force such thatF11 = λ . To show quantita-
tive results we plot the evolution of the directions ofV∗ (normal vector to the critical
material plane) andΓ V∗ (material direction of evolution) with respect to the fiber
directions in Figure 5. It is to note that for bothα = 0◦ andα = 90◦, even if the
material is not isotropic, the deformation gradient is diagonal and then the Eshelby
stress tensor is symmetric. Thus the problem reduces to the special case studied in
Section 2.2.1; the normal vector to the material surfaces and the normal to the plane
in which they will grow are identical. In other cases, they are different.
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Fig. 5 (•) Orientation of the critical material plane which could release the maximum of energy:
̂(e1,V∗). (�) Orientation of the corresponding material translation̂(e1,Γ V∗). Left-hand side graph:

λ = 2; right-hand side graph:λ = 4.

Finally, Figure 6 shows some qualitative results obtained for four fiber orienta-
tions. This figure illustrates with simple sketches four particular quantitative results

Fig. 6 λ = 4-extension of
a transversaly isotropic hy-
perelastic strip: (a)α = 0◦,
(b) α = 30◦, (c) α = 60◦ and
(d) α = 90◦.

given in Fig. 5: forλ = 4, it exhibits the orientation of the critical material surfaces
(V∗) and the direction of the material translation (Γ V∗) for four fiber orientation
angles.

4 Discussion

The present paper is only a second step towards the understanding of the physical
significance of the Eshelby stress tensor components, afterthe one of Kienzler and
Herrmann. The relevance of the polar decomposition of the Eshelby stress tensor
was demonstrated by considering that this tensor is the driving force of microstruc-
tural evolution. For an idealized RVE, it was shown that the ”pure material stress
tensor”ϒ can be considered as a measure of the microstructural damageand of
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the direction of defects that will grow, and also that the ”rotational material stress
tensor”Γ contains the way these defects will evolve.
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