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Abstract After pointing out the limitations of the classical Neuber type methods, we propose a
new procedure for calculating fatigue life of notched components. It includes a new approach for
accelerated evaluation of stress and strain histories at the notch tip. A methodology coming from
the study of uniform fields models is used to describe the evolution of the residual stresses at the
notch tip. A tensorial variable allows us to take into account the stress redistribution around
the notch tip. The model is calibrated by two short FEM computations of the component
representing a monotonic preload of the structure, first with the elastic behaviour, then with the
real elasto-plastic behaviour. These computation results are used to determine the parameters
of the transition rule, which allows to simulate the whole loading history. The local stress
histories are then treated through a new multiaxial rainflow cycle counting algorithm. Contrary
to classical rainflow algorithms that count an equivalent variable, it takes into account the whole
stress tensor. First, a new algorithm is used to determine the minimum circle circumscribed
to the deviatoric load path. Then, cycles are extracted following the ”active surfaces” concept
used in some plasticity models. Then, the multiaxial Chaboche model is applied to compute
the elementary damage generated by each extracted cycle. Finally, a non-linear cumulation rule
is used to achieve the total damage generated by a load sequence, and the fatigue life of the
component. The full method was successfully applied to several notch geometries of components
subjected to different loadings, with cyclic or random load paths.

1 INTRODUCTION

To predict the fatigue life of a component, we need to determine the local variables at the
critical point (i.e. the notch tip). This can be done by means of a finite element method (FEM)
computation, but it is time consuming, especially when complex structures are subjected to
low cycle fatigue. That is why engineers often use accelerated computation methods. Some of
them directly determine the stabilized values of stresses and strains over the whole structure.
These methods do not provide any information on the accomodation process. Other methods
compute the values of stresses and strains only at the critical point, but during the whole history.
The well-known Neuber method [17] was the first one ever developed for uniaxial stress states.
Many researchers tried to extend this method to multiaxial stress states [11] [1] [16] but at this
day, no method can accurately compute local variables. The far most efficient method is the
Buczynski-Glinka’s one [5], but it still fails to predict for example the hoop stress and strain on
an axisymmetric notched specimen. In this paper we address Neuber-type methods. The new
presented approach is based on an adjustable scale transition rule that was originally dedicated
to micro-macro modelling of polycristals [6,7]. But here we consider the material element at the
notch root as a plastic inclusion in an elastic matrix playing the role of an homogeneous medium.
The model was validated on many loading cases, here we will present the most complex one:
a multiaxial random non-proportional tension-torsion loading. After that, a multiaxial rainflow
cycle counting algorithm and a 3D-Lemaitre-Chaboche damage law will be used to predict fatigue
life. Results provided by a reference FEA will be used as a reference for our method.
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2 MODEL DESCRIPTION

2.1 Model background

Using the solution of the problem of a spherical inclusion I in an infinite matrix M , Kröner’s
model allows to determine the relation between the average stress tensor (σ∼

M ), the stress tensor
in an inclusion of an aggregate (σ∼

I), the average plastic strain tensor (ε∼
pM ) and the plastic strain

tensor in the inclusion (ε∼
pI) [12]. The theory is based on Eshelby’s solution of an inclusion in an

infinite matrix, whose behaviour is supposed to remain elastic:

σ∼
I = σ∼

M + C
≈

:
(
ε∼
pM − ε∼

pI
)

(1)

The fourth order tensor C
≈

depends on the elastic properties and of the shape of the inclusions.

As classically shown [2], this linear correction involves an elastic accommodation, so that the
residual stresses (id est the difference between the average stress and the stress in the inclusion)
are too large. The residual stress level is valid at the onset of plastic deformation in the inclusion,
nevertheless, a more realistic evaluation for larger plastic strains must involve a plastic accom-
modation. This is the case in the self-consistent approach developed by Hill [10], and also in the
“β–rule” proposed by Cailletaud and Pilvin [6, 7]. The interest of this last model is to combine
an explicit formulation and a plastic accomodation. The idea is just to replace the plastic strain
ε∼
pI in eq. 2 by an auxiliary variable, β

∼
I , with a non linear evolution, so that the amount of

residual stress is limited. The average of β
∼

I on the whole aggregate is β
∼
, and the model writes

now:

σ∼
I = σ∼

M + C
≈

:
(
β
∼
− β
∼

I
)

with β̇
∼

I
= ε̇∼

pI −D
≈

: β
∼

I ||ε̇∼
pI || (2)

2.2 The new models

Two types of corrections will be introduced, by adapting the two previously presented methods
for the case of the material element located at the notch tip. It will be assumed that stresses
and strains concentrate in this area, and that the redistribution observed is similar to the stress
and strain evolution in an inclusion. An important modification has to be made in the corrective
term: since the material element is at the surface, three components of the stress tensor must
remain equal to zero.
The linear correction (L-type) writes:

σ∼
I = σ∼

M + C
≈

L :
(
ε∼
pM − ε∼

pI
)

(3)

Assuming that the normal to the free surface is x1, three lines and three columns of the C
≈

L

tensor must be full of zeros. On the other hand, ε∼
pM is negligible since the global plasticity

remains small.
The non-linear correction (N-type) writes:

σ∼
I = σ∼

M + C
≈

N :
(
β
∼
− β
∼

I
)

with β̇
∼

I
= ε̇∼

pI −D
≈

N : β
∼

I ||ε̇∼
pI || (4)

Again, C
≈

N and D
≈

N tensors have zeros on three columns and three lines. In equations 3 and 4,

σ∼
I and ε∼

pI characterize now the stress and plastic strain tensor at the notch tip, meanwhile σ∼
M

is the uncorrected reference stress. The equivalent average tensor β
∼

is negligible.
Unlike Kröner’s or Hill’s models, this approach has adjustable parameters. The tensor compo-
nent must be customized to take into account various types of materials (see for instance an
application to directionnally solidified alloys in [19]). The purpose of the present paper is to
investigate the calibration of the model for a finite body with a free surface. The plastic zone at
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the notch tip is considered as a specific inclusion, and the zone surrounding this material element
plays the role of the equivalent medium. It is worth mentioning that the analogy between this
case and the class of theories used for the definition of homogenization models is not fully verified.
Inclusions in infinite media are submitted to an uniform state of stress. This is no longer the
case for the material element of the notch root, since the reference medium is a finite specimen,
and a free surface is introduced.

In the case of the N-type correction for example, the fourth order tensors C
≈

N , D
≈

N have to be
determined from FEA. For a tension-torsion loading on the longitudinal axis 2 of a notched
axisymmetric specimen, the shape of these tensors is the following in Voigt notation (with
(1, 2, 3) ≡ (r, z, θ)):

σ∼ ≡



0
σ2

σ3

0
σ5

0

 ε∼ ≡



ε1

ε2

ε3

0
ε5

0

 (5)

Three lines and three columns in C
≈

N and D
≈

N are then full of zeros to ensure a zero stress vector

at the free surface. C
≈

N and D
≈

N are symmetrical.

C
≈

N ≡



0 0 0 0 0 0
0 CN

22 CN
23 0 0 0

0 CN
23 CN

33 0 0 0
0 0 0 0 0 0
0 0 0 0 CN

55 0
0 0 0 0 0 0

 D
≈

N ≡



0 0 0 0 0 0
0 DN

22 DN
23 0 0 0

0 DN
23 DN

33 0 0 0
0 0 0 0 0 0
0 0 0 0 DN

55 0
0 0 0 0 0 0

 (6)

These tensors are introduced in eq. 4, where the macroscopic plastic strain tensor has been set
to zero, and the local plastic strain is replaced by β

∼
I :

σ∼
I = σ∼

M − C
≈

N : β
∼

I (7)

Eight correction rule parameters have to be calibrated, four in C
≈

N , four in D
≈

N . For this purpose,
we use an optimization procedure. This algorithm takes the results of two FE computations as
target solutions, and the result of the accelerated computation:

• an elastic computation of the structure, to evaluate the elastic stress state at the notch
root for a monotonic loading;

• an elasto-plastic computation, providing the evolution of the local stresses and strains
during the same loading. This solution is considered as a reference.

The constitutive equations are obtained by introducing the von Mises plasticity criterion, a
plastic flow rate deduced from the normality rule, and a non-linear kinematic behaviour [13]:

f (σ∼) = J
(
σ∼ −X∼

)
−R0 with J (σ∼) = ((3/2) sijsij)

1/2 (8)

ε̇∼
p = ṗ

∂f

∂σ∼
(9)
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ṗ is evaluated in the consistency condition. At constant temperature, the evolution rule for
kinematic hardening is:

Ẋ∼ =
2
3
Cε̇∼

p −DX∼ ṗ (10)

We first test the effect of the nature of the correction, by using a plate specimen subjected to
tensile loading, thus resulting in an uniaxial stress state at the notch tip. Then, 30 cycles are
simulated with the same parameters. Whereas we reach a mechanical steady state for the L-type
correction, the mechanical response for the N-type correction exhibits an unlimited ratchetting
effect. This last behaviour is unrealistic: it is neither observed during experimental tests nor in
finite elements analysis in the case of confined plasticity: even if the loading is stress-controlled,
strains are constrained by the elastic matrix surrounding the notch tip, and the local load is strain-
controlled. This effect is only due to the non-linearity of the correction rule: such a behaviour
is classically obtained with the Chaboche-type constitutive equations, when a representative
volume element (RVE) is subjected to a repeated loading under stress control. To avoid this
unrealistic ratchet, one often superposes a linear kinematic hardening to the non-linear one. In
the present case, we derive a new expression for our correction term:

β̇
∼

I
= ε̇∼

pI −DN

≈
:
(
β
∼

I − δ
≈

: ε∼
pI
)
||ε̇∼

pI || (11)

The tensor δ
≈

is just a diagonal, and we observed that the values of the components related to
torsion were half of the ones related to tension. This ninth parameter has to be calibrated over 3
branches of a repeated loading. For the applications that are shown in the following, we observed
that L-type correction gives a good accuracy when applied to constant-amplitude loadings. This
is an interesting result, since the number of parameters that have to be calibrated is rather low.
However, in the case of variable-amplitude loadings, the N-type correction appears to be far more
accurate. Thus we decided to use the L-type correction in case of constant-amplitude loadings,
and the N-type correction for variable-amplitude loadings.

3 FATIGUE LIFE PREDICTION

3.1 Multiaxial rainflow algorithm

This algorithm was developed by Melnikov and Semenov [15] and implemented in ZeBuLoN
code by Quilici and Musienko [18]. Starting from the loading path, it provides a series of centers
and ranges that characterize the cycles. It is based on the “active surface” concept used in
some plasticity models, and on a cycle extraction procedure inspired from the uniaxial rainflow
technique. There is no threshold in the model.
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Figure 1: Illustration of the cycle extraction procedure: (a) Example of a one dimensional
loading path; (b) Successive locations (dashed circles) of the domain circumscribing the loading
path during the first loading OA and final position (solid circle); (c) Successive locations and
final domains during AB branch (d) Successive locations and final domains during BC branch
(e) Elimination of the circle of diameter AB and growth of the former OA diameter circle to
reach OD. (f) Determination of the center of the current active surface for a non-proportional

loading [18]

The various steps of the algorithm used for cycle extraction are given in figure 1. A simple loading
path for a one dimensional tensile loading (figure 1 (a)) is taken as an example. The algorithm
starts with a circle reduced to a point in O. During the first branch OA, the diameter increases
to remain equal to the actual load, so that the final position corresponds to a circle of diameter
OA (figure 1 (b)). Just after A, following the AB branch, an unloading is detected, and a new
active surface is created, whose final size corresponds to a diameter AB (figure 1 (c)). A new
unloading is detected after B along BC branch, and new active surfaces are created inside the
(AB) circle. Once the current point reaches C, the second and the third active surfaces coincide,
that means that one cycle is closed, and it is extracted (figure 1 (d)). After extraction, only the
initial circle of diameter OA remains in the plane. It is reactived and keeps growing until point
D is reached (figure 1 (e)).
In this 1D case, unloading is easy to detect, however in more complex cases a criterion is needed.
This is illustrated in figure 1 (f), where it is assumed that a solid-line surface defined by its center
(X∼ nd−1

) and its radius R has been created. After this point, the unloading condition writes:

(S∼ −X∼ nd−1
) : dS∼ < 0 (12)

When unloading is detected, the origin X∼
0
nd

of the new active surface is saved. Then, the center
X∼ nd

of this surface moves between X∼
0
nd

and the center of the former active surface X∼ nd−1
. This

center is the intersection of the right bissector of (S,X0
nd) at point 1

2

(
X0

nd + S
)

with the straight
line (Xnd−1,X0

nd).
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3.2 Lemaitre-Chaboche damage law

In this paper we use the classical Lemaitre-Chaboche damage law for multiaxial stress states
[14], [13]. This model introduces a non-linear damage cumulation rule, expressed by a differential
equation:

dD =
(
1− (1−D)β+1

)α(∆J,I1,Jmax)
(

∆J/2
M
(
I1

))β

dN (13)

where ∆J is the diameter of the circle circumscribed to the loading space in the deviatoric stress
space [4], I1 is the mean value of the first stress invariant and Jmax the maximum value of the
von Mises invariant of the stress tensor.
The function α

(
∆J, I1, Jmax

)
characterizes the non-linearity of the damage evolution, defines

the non-linear cumulation, and allows to take into account the mean stress effect:

α
(
∆J, I1, Jmax

)
= 1− a

〈
∆J/2− σl

(
I1

)
σu − Jmax

〉
(14)

where σl

(
I1

)
= σl0

(
1− 3 I1/σu

)
The expression of M

(
I1

)
is derived from Gerber’s uniaxial fatigue criterion and induces a mean

stress effect again:

M
(
I1

)
= σl0

(
1− 3

I1

σu

)
(15)

4 COMPARISON BETWEEN THE MODEL PREDICTIONS AND REFER-
ENCE FEA

The validation of the present method is now made by comparing the results of our model to
those provided by a finite element analysis considered as a reference. An axisymmetrical notched
specimen is computed with the code ZSeT/ZeBuLoN [3]. This geometry is critical for most of
the other models. In particular, the hoop stress and strain are generally not well captured.

The core diameter is 9.2 mm; the diameter at the notch root is 7 mm. The radius of the notch
is 0.4 mm. The stress concentration factor in tension (σ2 at the notch root divided by σ2 on the
top of the specimen) is 2.7; the same ratio computed for the case of a torsion loading (component
σ5) provides a value of 1.75.

Two short FE computations have to be made to calibrate the model parameters. Assuming that
direction 1 is normal to the notch root and direction 2 is the tensile direction, a tension loading
allows to define the components 22, 23, 33 of the tensors. A torsion test is needed to calibrate
the components 55. These two sets of parameters are calibrated separately. For this purpose, FE
computations are considered as a “numerical experiment”, and the parameters of the simplified
model are adjusted to reproduce the same curve. Once the parameters are adjusted, they can
be used to simulate a very large number of cycles.

The full specimen is modeled by second order tetrahedral solid elements with reduced integration
(10 nodes, 5 Gauss points) for computing the random non-proportional loading.
The mesh is presented in figure 2. A convergence has been made to establish the relevant element
size at the notch root. The value for the final mesh is 0.14 mm i.e. 1.5 % of the core diameter.
The FE results were read at the notch tip, on the x1 axis.
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Figure 2: Mesh for the
random multiaxial loading:
60905 elements, 267807 dof

CN
22 1.22.105 MPa DN

22 1.45.101

CN
33 2.14.105 MPa DN

33 7.72.102

CN
23 4.02.104 MPa DN

23 6.64.101

CN
55 6.17.104 MPa DN

55 3.81.102

δ 0.92

Table 1: The parameters of the
N-type correction, obtained by

calibration on pure tensile and pure
shear tests [9]

In the FEA (mesh of figure 2), the bottom of the specimen is fixed in all directions. A tensile
force and a torsion force are applied on the top of the mesh. At the notch root, there are several
non zero terms in the stress and strain tensors, namely σ2 = σ22, σ3 = σ33 and σ5 = σ23,
ε1 = ε11, ε2 = ε22, ε3 = ε33 and ε5 = ε23. The model parameters of the N-type correction have
been identified on the first three branches of two tension and torsion loadings, even if they could
have been calibrated on any combined loading. They are presented in table 1.
This model has been applied to a series of tests with various ratios, various loading levels and
loadings types. In each case, the predictions are in good agreement with the reference provided
by FEA [9].

4.1 Predicted local stress-strain histories

The present paper focuses on multiaxial nonproportional random loading. The loading history
is given in figure 3. The comparisons of the N-type rule and the FEA are given in figure 4.
Once again, the model gives a rather good approximation. The results of our model are quite
superposed with the signals provided by the finite element method, except for ε3, which values
are very low. Buczynski-Glinka’s method cannot be applied here, since it requires a signal
preprocessing [8] that cannot be applied if the principal directions change.

Figure 3: Random multiaxial non-proportional loadpath
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Figure 4: Comparison of the local histories obtained by FEA and the present model for a
random non-proportional loading

8of 10



4.2 Predicted fatigue life

The fatigue properties of 30CrNiMo8 have been identified on a S-N curve at R = -1. The following
parameters have been calibrated:

M = 20860 MPa β = 2.87 σl = 584 MPa σu = 1153 MPa a = 1

The local stress-strain histories computed at the notch tip by FEM and evaluated by the present
model are used as an input of the multiaxial rainflow algorithm. In both cases, 13 cycles have
been extracted. These cycles are used to predict the fatigue life of the specimen. We predict the
fracture of the specimen after:

• 1452 realisations of the signal by using the histories computed by FEM;

• 1404 realisations of the signal by using the histories computed by the N-type correction.

The predicted fatigue lives calculated after the finite element computation and after the N-type
correction are very close to each other.

5 CONCLUDING REMARKS

In this study, we presented an accelerated computation method based on a new approach. An
adjustable elasto-plastic correction rule is used to compute the local stresses and strains at the
notch root. Two types of corrections –namely L- and N-type– are used respectively in case of
constant or variable amplitude loadings. The new method has been validated under a random
non-proportional loading applied to an axisymmetric notched specimen. The results of our model
are quite close to the finite element results, even in the hoop direction, where most of the existing
methods fail. Moreover, among the existing accelerated computation methods, our model is the
only one that can be applied to random non-proportional loadings. These results are quite
encouraging, and show that this method can be used as a preprocessor for a multiaxial fatigue
analysis.
Further studies will focus on the physical meaning of the model parameters. We will try to
develop an expression of the parameters as a function of :

• the geometry, implying stress concentration factors matrixes;

• the behaviour, by means of the parameters of the constitutive equations.

Such a rule would avoid new identifications of the L- or N-type correction parameters. Also, it
is worth noting that the impact of the errors made by each accelerated method on the fatigue
life prediction accuracy strongly depends on the fatigue model that is used. Thus, other fatigue
models will be further applied.
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