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1. Introduction

Nowadays, it is a common practice in the industry to use the finite element

method in order to predict the structural behavior. Current tools for modelling

physical systems are nowadays widespread and at a high level. The consequence

is that the resulting models are becoming detailed and rather accurate, and

this means that the complexity can be relatively high. When dealing with

uncertainties, this complexity implies high computation cost especially using

Monte Carlo simulations. In this context, model reduction is a topic which

receives growing attention. Goals of model reduction are multiple: firstly, you

have an internally complex system and you want to reduce it’s complexity,

preserving input-output behavior. Secondly, you are interested in systems and

control theory or thirdly you want to make your simulations faster.

In the context of stochastic mechanic randomness is often simulated through

Monte Carlo simulations. Even if Monte Carlo methods simulations have strong

advantages [1, 2], they usually become extremely computationally extensive
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when full models are under consideration. That is the reason why alternatives

have been developed such has the Stochastic Finite Element Method (SFEM)

[3]. This method aims at representing the complete response probability density

function (PDF) and is based on the discretization of the input random fields and

the expansion of the response onto a particular basis of the probability space

called the polynomial chaos [3]. This is equivalent to build a metamodel.

In this paper we focus on model based approaches instead of metamodelling

techniques. Model based approaches deal with the mechanical model and its

resolution. We introduce an original use of the LDLT decomposition to accel-

erate the inversion of the stiffness matrix. This technique is developed within

the context of linear elastic mechanic with material properties modeled by a

stochastic field. Mathematical aspects are first described. Then, the method is

applied onto an industrial example from the rail industry.

2. The Cholesky decomposition

2.1. Introduction

The Cholesky decomposition is a decomposition of a symmetric, positive-

definite matrix A into the product of a lower triangular matrix and its conjugate

transpose [4, 5]:

A = LLT (1)

where L is a lower triangular matrix with strictly positive diagonal entries. The

Cholesky decomposition is unique: given a symmetric positive-definite matrix

A, there is only one lower triangular matrix L with strictly positive diagonal

entries such that A = LLT (in the case of a positive semi-definite matrix A, the

Cholesky decomposition is not unique). An alternative form is the factorization

[6, 7]:

A = LDLT

This form eliminates the need to take square roots:
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Li,j =
1
Dj

(
Ai,j −

j−1∑
k=1

Li,kLj,kDk

)
for i > j (2)

Di = Ai,i −
i−1∑
k=1

L2
i,kDk

Because A is positive definite, the elements of the diagonal matrix D are all

positive. However this factorization can be used for any square, symmetrical

matrix.

2.2. Application to Monte Carlo simulations

The Cholesky decomposition is commonly used in the Monte Carlo simula-

tions for simulating systems with correlated variables or random fields [8]. The

correlation matrix is first decomposed using Cholesky decomposition. Then,

the lower triangular matrix L is applied to a vector ξ of uncorrelated variables.

The product Lξ produces a sample vector with the covariance properties of the

system being modeled. In this paper, the Young modulus is supposed to be

modeled by a gaussian random field of mean µE , standard deviation σE and a

variance-covariance matrix ΣE (which is a symmetric and positive semi-definite

matrix). The correlation kernel is supposed to be Gaussian too. Let ξ be a

vector (of size n) whose components are independent standard normal random

variables. L is the matrix obtained from the Cholesky decomposition of the

variance-covariance matrix ΣE . The random vector E follows a multivariate

normal distribution and E = µE +Lξ. The vector µE in these conditions is the

expected value of E and the matrix ΣE = LLT is the covariance matrix of the

components Ei. If ΣE is non-singular, then the distribution may be described

by the following PDF:

fE(e1, . . . , en) =
1

(2π)n/2 det (ΣE)1/2
exp

(
−1

2
[e− µE ]T Σ−1

E [e− µE ]
)
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2.3. Application to finite elements simulations

In finite elements analysis, the stiffness matrix is a banded semi-positive

definite matrix. In this case, the LDLT decomposition is very usefull to solve

the system of linear equations. Let us considered a Young modulus modeled by

a random field E(x, θ). The loads f are supposed to be deterministic (however,

assuming randoms load do not affect the method and is not considered here

for clarity). Using the finite element formulation [9] in the context of linear

elasticity, the following system must be solved:

K(E(x, θ))u(E(x, θ)) = f (3)

The resolution of equation 3 is done using the LDLT decomposition of the ma-

trix K(E(x, θ)). By construction, the stiffness matrix K is symmetric, positive

definite and band. It admits a LDLT decomposition [7]:

K(E(x, θ)) = L(E(x, θ))D(E(x, θ))L(E(x, θ))T (4)

L(E(x, θ)) is a lower triangular matrix with unit diagonal entries andD(E(x, θ))

is a diagonal matrix which diagonal terms are noted d. Injecting 4 into 3, the

displacement field u(E(x, θ)) reads:

u(E(x, θ)) = L(E(x, θ))−T D(E(x, θ))−1 L(E(x, θ))−1 f (5)

Remark 1 For reading purpose, we write E(x, θ) as E until the end of the

document.

Remark 2 In the context of Monte Carlo simulations, the LDLT decom-

position has to be performed for each sample which is computationally intensive.

If b is the half bandwidth of the stiffness matrix, ndof the number of degrees of

freedom, nelem the number of elements of the finite element model and nsamp

the number of samples; the cost of a classic Monte Carlo resolution is equal

to the cost of a Cholesky decomposition (ndofb2 + 2ndofb) plus forward and
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backward substitution (4ndofb) plus the cost of the inversion of the matrx D

(ndof ). The total cost (for one sample) of the classic Monte Carlo approach is

ndofb
2 + 6ndofb. However, in the context of stochastic computation, in order

to take advantage of this decomposition, we proposed a modified version of the

LDLT decomposition: the SLDLT decomposition.

3. SLDLT decomposition

3.1. Hypothesis

The idea behind the SLDLT decomposition is to approximate equation 4

with the following formula:

Kap(E) = L(E0)D(E)L(E0)T = L0D(E)LT0 (6)

Kap(E) is the LDLT approximation of the stiffness matrix K(E), E0 corre-

sponds to the mean value of the stochastic field E(x, θ) (E0 = E(x, θ0)). The

form in equation 6 is equivalent to make the assumption that the fluctuations

of the matrix L are supposed to be negligible. This way, the randomness is

put on the diagonal matrix D. The matrix L0 is computed from the matrix

K0 = K(E0):

K0 = L0D(E0)LT0 (7)

3.2. Optimization problem

From equation 6, for each sample of the random field, the objective is to

calculate the best matrix D(E) which approximates the stiffness matrix K(E).

This is equivalent to solve an optimization problem: minimize the difference

between K(E) and Kap(E). To help computation, we use the following lemma:

Lemma 1 The matrix L0D(E)LT0 can be written as a combination of the

terms di of the diagonal matrix D as:
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L0D(E)LT0 =
ndof∑
i=1

di(E)Λi (8)

where ndof is the number of degrees of freedom and Λi = (L0).i (L0)T.i (product

of the ith column of L0 with the ith row of LT0 ).

3.2.1. Matrix preconditioning

In order to reduce the condition number of a matrix, the use of a precon-

ditioner can be very usefull. To preserve matrix symmetry, a left-right precon-

ditioning technique is used. We use the Jacobi preconditioner which consist of

the diagonal of the matrix [10]:

mij =


√
aij if i = j

0 otherwise
(9)

For instance, if a matrixM approximates the coefficients matrix A in some way,

the system:

M−1AM−1 (Mx) = M−1b (10)

has the same solution as the original system Ax = b, but the spectral properties

of its coefficient matrix M−1AM−1 may be more favorable.

3.2.2. Optimality system

In the context of linear mechanic, the matrix K(E) is a linear function of E.

This way, the matrix D(E) (see equation 6) is defined as a linear form in E and

the optimization criterion must be a quadratic one. As the difference between

K(E) and Kap(E) must be minimized, the cost function JE(d) writes:

JE(d) =
1
2
(
M(E)−1K(E)M(E)−1, L0D(E)LT0

)
F

(11)

(, )F is the Frobenius norm: (, )F = trace
{
AAT

}
. The preconditioning matrix

M(E) is assumed to be constant and equal to M0:
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M(E) = M (E0) = M0 = diag(K0)1/2 (12)

Injecting equation 12 into equation 11 and using equation 8, the cost function

JE(d) rewrites:

JE(d) =
1
2

(
M−1

0 K(E)M−1
0 ,

ndof∑
i=1

di(E)Λi
)
F

(13)

Assuming Kcond(E) = M−1
0 K(E)M−1

0 equation 13 is simplified:

JE(d) =
1
2

(
Kcond(E)−

ndof∑
i=1

di(E)Λi
)
F

(14)

3.2.3. Optimality condition

The objective function JE(d) (equation 14) is strictly convex and differen-

tiable in d so a necessary and sufficient optimality condition writes:

J ′E(d)δd = 0 ∀δd (15)

This equivalent to solve the system:

trace

−
Kcond(E)−

ndof∑
j=1

dj(E)Λj

Λi

 = 0 ∀i = {1, . . . , ndof} (16)

Rewriting and rearranging equation 16, the solution of the optimization problem

(equation 11) is:

Ad(E) = b(E) (17)

With:

Ai,j = trace
{

ΛjΛi
}

=
[
(L0)T.j (L0).i

]2
(18)

bi(E) = trace
{
Kcond(E)Λi

}
= (L0)T.i Kcond(E) (L0).i
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The matrix A is a band matrix with the same bandwidth as K (the LDLT

decomposition preserves the band structure), is independent of the random field

E(x, θ) and has the same size as K.

3.2.4. Algorithm improvements

Equation 18 can be rewritten to speed up the computation of the matrix

D(E) considering the nelem elementary stiffness matrices ke and assuming the

uniformity of the Young modulus over the finite element e:

Kcond(E) = M0 (Anelem
e=1 ke)M0 =

nelem∑
e=1

E(e)Ke
cond (19)

E(e) is the Young modulus associated to the eth element. Ke
cond is a ndof ×

ndof in which the elementary stiffness matrix ke is positioned. ke is computed

for a unit Young modulus. Following this assumption, equation 18 rewrites

(∀i = {1, . . . , ndof}):

bi(E) = (L0)T.i

(
nelem∑
e=1

E(e)Ke
cond

)
(L0).i =

nelem∑
e=1

E(e)bei (20)

which finally leads to:

b(E) =
nelem∑
e=1

E(e)be (21)

Injecting equation 21 into equation 17, the solution of the system writes:

d(E) = A−1b(E) =
nelem∑
e=1

E(e)de (22)

with:

de = A−1be

3.3. Displacements computation

Equation 22 gives the best coefficients for the diagonal matrix D. Assuming

a deterministic load and injecting equation 6 into 3, the displacement field u(E)

of the structure is equal to:
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u(E) = L−T0 D−1(E)L−1
0 f (23)

In this expression of the displacement field, only the matrix D−1(E) has to

be updated. This way, the number of flops is equal to backward and forward

substitution plus the inversion of D(E) (total of 4ndofb flops).

3.4. Error control

The goal of error estimators is to estimate the error made by the approxi-

mation. In the case of Monte Carlo LDLT simulation, two a priori estimators

have been developed: one for the approximation of the stiffness matrix and one

for the displacement field. It defines the error as the difference between the

exact solution and the one calculated by the LDLT decomposition.

3.4.1. Error estimator for the stiffness matrix

The error estimator for the stiffness matrix computation is deduced from the

resolution of equation 14 for the optimal value dopt:

JE(dopt) =
1
2

Kcond(E)−
ndof∑
i=1

dopti (E)Λi,Kcond(E)−
ndof∑
j=1

doptj (E)Λj


F

=
1
2

(
Kcond(E)−

ndof∑
i=1

dopti (E)Λi,Kcond(E)

)
F

(24)

=
1
2

(Kcond(E),Kcond(E))F −
1
2

ndof∑
i=1

dopti bi(E)

This equation can be rewritted injecting equation 17:

JE(dopt) =
1
2

(Kcond(E),Kcond(E))F −
1
2
(
A−1b(E)

)T
b(E)

(25)

=
1
2

(Kcond(E),Kcond(E))F −
1
2
bT (E)d(E)

Finally, equations 19 and 25 lead to:
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JE(dopt) =
1
2
ET QE (26)

Nevertheless, it is possible to simplify the computation of matrix Q from equa-

tion 25:

Q = Q1 −Q2

with:

Q1
ee′ =

1
2

(
Ke
cond,K

e′

cond

)
F

(27)

Q2
ee′ =

1
2

(be)T de
′

The Q matrix is independent of the realizations of the stochastic field. A slight

modification of equation 26 allows to simplify the expression of the error esti-

mator:

JE(dopt) =
1
2

nelem∑
e=1

nelem∑
e′=1

Ee Ee′Qee′

=
1
2

nelem∑
e=1

nelem∑
e′=1

(
E ET

)
ee′
Qee′ (28)

=
1
2
(
E ET , Q

)
F

From equation 28, the mean of the estimator can be directly computed from the

knowing of the covariance matrix Cov(E) (wihch is one data). By definition:

Cov(E) = Eθ
{

(E − E0) (E − E0)T
}

(29)

which implies:

Eθ
(
E ET

)
= Cov(E) + E0 E

T
0 (30)

Consequently, the mean error rewrites as (from equation 28):
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Eθ
(
JE(dopt)

)
=

1
2
(
Eθ
(
E ET

)
, Q
)
F

(31)

=
1
2

(Cov(E), Q)F +
1
2
(
E0 E

T
0 , Q

)
F

Besides, the unicity of the optimum of J implies
(
E0 E

T
0 , Q

)
F

= 0. Finally, the

solution is:

Eθ
(
JE(dopt)

)
= (Cov(E), Q)F (32)

Cov(E) is one input of the problem and the matrix Q is independent of E

sampling. This way, Eθ can be estimated a priori.

3.4.2. Error estimator for the displacement field

The objective is to estimate ‖ uex(E) − uap(E) ‖L2 which is the L2 norm

of the difference between the exact value uex of u and its LDLT approximation

uap. For one sample of the Young modulus field Kexuex = f and Kapuap = f .

This way for every realization:

Kexuex −Kapuap = 0 (33)

This equation can be rearranged:

[Kex −Kap]uex +Kap (uex − uap) = 0 (34)

and:

uex − uap = (Kap)−1 [Kex −Kap]uex

(35)

=
[
I − (Kap)−1

Kex
]
uex

Finally, from equation 35:
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‖ uex − uap ‖L2

‖ uex ‖L2
6 ‖ (Kap)−1 [Kap −Kex] ‖L2 (36)

where ‖A‖L2 =
[
ρ
(
ATA

)]1/2 is the matrix norm related to the euclidian norm.

Introducing the following lemma (lemma 2) it is possible to rewrite equation 36.

Lemma 2 If K is a symmetric positive definite matrix which admits a

LDLT decomposition then:

‖K‖L2 6 l dmax (37)

with dmax = maxi=1,...,ndof
di and l = ρ

(
LLT

)
.

Lemma 2 demonstration

‖K‖L2 = ‖LDLT ‖L2

6 ‖L‖L2 ‖D‖L2 ‖LT ‖L2 (38)

6 ‖L‖2L2 ‖diag(d)‖L2

The computation of ‖ uex−uap ‖L2 / ‖ uex ‖L2 is equivalent to the computation

of the relative error which is noted errelu(E). Using lemma 2, the relative error

on u writes:

errelu 6 γ max
i

(1/di) ‖Kap −Kex‖L2 (39)

with γ = ‖L−1
0 ‖2. From norms equivalence between the L2-norm and the Frobe-

nius norm, injecting equation 28 into equation 39 the relative error on u is equal

to:

errelu 6 γ (1/dmin)
(
E ET , Q

)1/2
F

3.5. Statistical moments evaluation

One of the advantages of the proposed LDLT decomposition is to allow the

computation of the mean and the covariance matrix of the displacement field
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without mechanical computations. The mean ū and the covariance matrix Cu

are directly deduced from equation 23 and coefficients 1/di(E).

3.5.1. The mean

ū =
∫

Ω

u(E)dpθ

=
∫

Ω

K−1(E) fdpθ

= L−T0

∫
Ω

D−1(E) L−1
0 f dpθ

= L−T0

∫
Ω

D−1(E) L−1
0 dpθ f

= L−T0

{∫
Ω

D−1(E)dpθ
}
L−1

0 f

= L−T0 D̄−1 L−1
0 f (40)

with:

D̄−1 =

 D̄ii
−1 =

∫
Ω

1
di(E)dpθ

D̄ij
−1 = 0

(41)

3.5.2. Covariance matrix

By definition:

Cu =
∫

Ω

(u(E)− ū) (u(E)− ū)T dpθ

=
∫

Ω

u(E) u(E)T dpθ −
∫

Ω

u(E) ūT dpθ −
∫

Ω

ū u(E)T dpθ +
∫

Ω

ū ūT dpθ

= L−T0 CdL
−1
0 −

∫
Ω

u(E)dpθ ūT − ū
∫

Ω

u(E)T dpθ + ū ūT
∫

Ω

dpθ

= L−T0 CdL
−1
0 − ū ūT (42)

The matrix Cd is detailled bellow:
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∫
Ω

u(E) u(E)T dpθ =
∫

Ω

K−1(E) f fT K−T (E)dpθ

=
∫

Ω

K−1(E) Cf K−T (E)dpθ

=
∫

Ω

L−T0 D−1(E) L−1
0 Cf L

−T
0 D−1(E) L−1

0 dpθ

= L−T0

{∫
Ω

D−1(E) Cg D−1(E)dpθ
}
L−1

0

= L−T0 Cd L
−1
0

with:

Cf = f fT

Cg = L−1
0 Cf L

−T
0

(Cd)ij =
∫

Ω

D−1
ii (Cg)ij D

−1
ii dpθ

=
{∫

Ω

dpθ

di(E) dj(E)

}
(Cg)ij (43)

3.6. Computational aspects

In the SLDLT approach, the cost of the Cholesky decomposition is replaced

by the resolution of equation 22 which is 2n2
dof . Nevertheless, the cost of the

error estimation has to be added (equation 28). From equation 27, the cost

of the Q matrix computation is equal to 4nelemndofb. This matrix has to be

computed once. Now, from equation 28 the cost of the estimation for one sample

is deduced and equal to 2n2
elem. Finally the gain is equal to:

Gain =
nsampndofb

2(
2n2

dof + 2n2
elem

)
nsamp + 4nelemndofb

(44)

This formula is very usefull because you can predict a priori the performance

of the method including the cost of model error estimation.
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4. Application: Bogie support fixing

The proposed Monte Carlo LDLT decomposition is applied onto an indus-

trial example from the rail industry: a bogie support fixing (figure 1). The

mesh (generated by ANSYS, see figure 2) is composed of nelem = 3408 10-Node

Tetrahedral elements which leads to 7058 nodes and 21174 unconstrained de-

grees of freedom. Applying the boundaries conditions (figure 1) the size of the

system is ndof = 20841 degrees of freedom. The pattern of the stiffness matrix

is plotted on figure 3. The maximal half bandwidth is bmax = 2342 and the

mean is b = 584. The pressure is deterministic. The Young modulus is modeled

by a Gaussian random field with Gaussian correlation model. The influence

of the coefficient of variation is investigated (Cv = {0.01, 0.05}) as well as the

performances of the method in terms of computational gain and error.

Les résultats pour Cv = 0.01 sont présentés Figures 4 à 8. La Figure 4

représente l’histogramme de l’erreur relative calculée par rapport aux tirages

de Monte Carlo. L’histogramme montre que l’erreur relative maximale est de

5% mais aussi que globalement l’erreur est inférieure à 2% avec une moyenne à

1.15%. Pour l’erreur calculée par l’estimateur d’erreur (équation 39), la moyenne

estimée est de 473 pour un maximum de 1431 (Figure 5. Cependant, si l’on

regarde le tracé de l’erreur relative par rapport à l’erreur estimée (Figure 6), il

n’y a pas de corrélation entre l’erreur relative et l’erreur estimée. Ceci montre

que même s’il est exacte du point de vue mathématique, la majoration induite

par l’estimateur ne permet pas de conclure directement sur la qualité du tirage.

La Figure 7 montre l’évolution du gain et du temps de calcul en fonction du

nombre de tirages rejetés. A partir de 5% d’erreur, le gain plafonne à 22 et le

temps de calcul est alors égale au temps de calcul SLDLT . Si l’on regarde la

courbe de convergence de la moyenne de l’erreur relative en fonction du niveau

d’erreur (Figure 8), à partir de 5% d’erreur la valeur de référence est atteinte.

En conclusion, pour un Cv de 1%, l’erreur maximale sur le déplacement est de

5% pour un facteur gain de 22.
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Figure 1: Bogie support fixing - Boundary conditions.

Figure 2: Bogie support fixing - Mesh and Stress analysis results.
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Figure 3: Bogie support fixing - Stiffness matrix shape.

Figure 4: Bogie - Histogramme de l’erreur relative sur u calculée par rapport aux tirages

Monte Carlo pour Cv = 0.01.
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Figure 5: Bogie - Histogramme de l’erreur sur u calculée par l’estimateur pour Cv = 0.01.

Figure 6: Bogie - Représentation de l’erreur relative par rapport à l’erreur estimée pour

Cv = 0.01.
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Figure 7: Bogie - Evolution du gain et du temps de calcul en fonction du seuil d’erreur pour

Cv = 0.01.
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Figure 8: Bogie - Graphe de convergence en moyenne de l’erreur relative en fonction de l’erreur

pour Cv = 0.01.
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Figure 9: Bogie - Histogramme de l’erreur relative sur u calculée par rapport aux tirages

Monte Carlo pour Cv = 0.05.
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Figure 10: Bogie - Histogramme de l’erreur sur u calculée par l’estimateur pour Cv = 0.05.
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Figure 11: Bogie - Représentation de l’erreur relative par rapport à l’erreur estimée pour

Cv = 0.05.
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Figure 12: Bogie - Evolution du gain et du temps de calcul en fonction du seuil d’erreur pour

Cv = 0.05.
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Figure 13: Bogie - Graphe de convergence en moyenne de l’erreur relative en fonction de

l’erreur pour Cv = 0.05.
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