ANALYSE MODALE EXPÉRIMENTALE DANS L'AUTOMOBILE ET LES INDUSTRIES MÉCANIQUES

Acquérir les connaissances pour mettre en oeuvre une analyse modale expérimentale dans l'automobile ou les industries mécaniques.

Présentation de la formation

Objectifs pédagogiques

- → Appliquer la procédure complète de l'analyse modale expérimentale
- → Expliquer les principes de base de la Vibrométrie Laser à balayage

Méthodes pédagogiques

Présentations et Travaux Pratique en laboratoire. Partage d'expérience avec les stagiaires.

Compétences visées

Comprendre la caractérisation dynamique d'une structure, mettre en oeuvre une analyse modale

expérimentale et apprécier l'apport de la vibrométrie laser à balayage

Moyens d'évaluation

Questionnaire à choix multiples (QCM)

Profil du formateur

Formateur expert technique dans le domaine vibro-acoustique

Personnel concerné

Ingénieurs, techniciens des services études, recherche et développement et essais

Prérequis

Aucun prérequis technique

Ref: N30
DISPONIBLE EN INTRA

SESSION EN 2026

Senlis

▼ 14h - 1255 € HT

→ du **24/06** au **25/06/2026** ¹

Rouen

▼ 14h - 1255 € HT

→ du 12/11 au 13/11/2026 1

¹ voir spécificités sur le site cetim.fr

CONTACTS

Renseignements inscription

Service Formation +33 (0)970 820 591 formation@cetim.fr

Responsable pédagogique

Thomas Vervaeke

En situation de handicap?

Consulter notre référent handicap pour étudier la faisabilité de cette formation à referent.handicap@cetim.fr

EN PARTENARIAT AVEC

Programme de la formation

- → Intérêt de l'Analyse modale expérimentale (AME)
 - > Rappel des bases théoriques :
 - > le système à un degré de liberté (masse, raideur, amortissement, résonance, etc.) ;
 - > le système à plusieurs degrés de liberté;
 - > les fonctions de transfert (FRF), la cohérence ;
 - > la considération sur l'instrumentation (excitations, réponses, etc.).
- → Cas pratique n° 1 illustration sur plaques/poutres élémentaires
 - > Influence conditions limites.
 - > Linéarité.
 - > Réciprocité.
 - > Masse capteur.
 - > Point d'entrée d'excitation.
 - > Méthodes de mesures.
 - > Conditions d'essai (libre-libre, encastré, etc.).
- → Méthode d'extraction modale
 - > Les méthodes d'extraction des paramètres modaux (SDOF, MDOF, etc.).
 - > Les outils de validation.
- → Cas pratique n° 2 AME par méthode impulsionnelle
 - > Constitution de la base modale expérimentale.
 - > Extraction modale.
 - > Validation de la base modale.
- → Cas pratique n° 3 : AME par excitation pot vibrant
 - > Constitution de la base modale expérimentale.
 - > Extraction modale.
 - > Validation de la base modale.
- → Apport de la vibrométrie laser à balayage
 - > Cas pratique : mise en œuvre sur un équipement automobile ou industriel.

