CONCEPTION DES MOULES POUR CAOUTCHOUC

Maîtriser et optimiser la conception d'un moule caoutchouc.

Ref: 1CCMC
DISPONIBLE EN INTRA

SESSION EN 2026

Vitry-sur-Seine

→ date à venir pour cette session

Présentation de la formation

Objectifs pédagogiques

 \rightarrow

Expliquer les différentes techniques de moulage et leurs spécificités

 \rightarrow

Concevoir un moule dans la technique de moulage choisie

→ Optimiser les dimensions et le nombre d'empreintes

 \rightarrow

Expliquer l'impact des nouvelles évolutions sur l'écoconception

Méthodes pédagogiques

Formation alternant théorie, intervenants extérieurs et exemples d'applications industriels

Moyens d'évaluation

QCM

Profil du formateur

Ingénieur spécialiste des matériaux élastomères et des procédés de transformation par moulage

Personnel concerné

Ingénieurs et Techniciens de bureaux d'études ou d'ateliers de moulage chargés de concevoir les moules pour caoutchouc ou d'optimiser les moules existants.

Prérequis

Niveau bac + 2 souhaitable. Connaissances suffisantes en dessin industriel.

CONTACTS

Renseignements inscription

Service Formation +33 (0)970 820 591 formation@cetim.fr

Responsable pédagogique Sylvia Page

En situation de handicap?

Consulter notre référent handicap pour étudier la faisabilité de cette formation à referent.handicap@cetim.fr

- → Méthodologie de conception d'un moule pour transformer du caoutchouc :
- > Du cahier des charges de la pièce et de sa matière, à la démarche de conception d'un outillage caoutchouc.
- → Les différentes techniques de moulage pour les caoutchoucs :
 - > Comparaison économique et technique

Programme de la formation

- > Impact financier du type de technologie.
- → Méthodologie « choix de type de moule ».
- → Méthodologie « choix du type / modèle de presse ».
- → Notions sur la rhéologie des caoutchoucs.
- → Données et propriétés influençant la mise en œuvre (vulcanisation, viscosité, thermique...)
- → Détermination de la position de la pièce dans le moule.
- → Détermination de la position des plans de joint et verrouillage du moule :
 - > Influence sur la présence des bavures durant le process de moulage.
- → Détermination du nombre d'empreintes et implantation de celles-ci.
- → Détermination de la forme et des dimensions du moule
- → Les différents systèmes de fixations sur presse, de centrage et de guidage.
- → Phénomènes physiques (le retrait) à prendre en compte lors de la conception d'un moule.
- → Détermination des dégorgeoirs et coupes-gommes.
- → La fonction alimentation / injection :
 - > Où alimenter la pièce ?
 - > Auto-échauffement de la matière.
 - > Formes et positions des canaux et seuils d'injection.
 - > Présentation des différents types d'alimentation possibles.
- → La fonction équilibrage de remplissage des moules :
 - > Simulation numérique : quelle aide à l'optimisation du process dès la conception du moule ?
- → La fonction « évents et dégazage ».
- → La fonction « démoulage » et systèmes d'aide au démoulage.
- → Quels aciers utilisés et les différents types de traitements de surface existants,
 - > Quel est l'impact des agents démoulants sur ceux-ci ?
- → La thermique des moules :
- > Présentation de systèmes d'optimisation de l'isolation et de la régulation thermique des outillages et son importance dans le process caoutchouc (impact économique)
- → Évolution des techniques de moulage :
 - > BCR forés ou usinés,
 - > BCR à obturation ou non.
 - > Avantages et inconvénients de ces technologies.
- → Les défauts de moulages principaux :
- → Causes <=>Effets <=> Remèdes au niveau de la conception des moules.

EN PARTENARIAT AVEC

Cette formation

