RÉDUCTION DU BRUIT DES SYSTÈMES ET COMPOSANTS MÉCANIQUES

Comprendre les mécanismes de génération et propagation du bruit dans le cadre d'une démarche de conception ou reconception.

Ref: K40
DISPONIBLE EN INTRA

SESSION EN 2026

Senlis

∑ 21h - 1949 € HT

→ du 18/11 au 20/11/2026

Présentation de la formation

Objectifs pédagogiques

- → identifier les problèmes posés par le bruit et le comportement vibratoire des machines ;
- → interpréter les mécanismes de génération et de propagation sonore ;
- → mettre en œuvre les règles pratiques de conception vibro-acoustique.

Méthodes pédagogiques

Méthode pédagogique alternant théorie et pratique au travers d'études de cas ou de travaux dirigés.

Moyens d'évaluation

Quiz final d'évaluation

Profil du formateur

Formateur expert technique dans le domaine, intervenant dans des missions de conseil et d'assistances techniques en entreprise.

Personnel concerné

Ingénieurs de bureaux d'études ou de services recherche et développement concernés par la réduction du bruit et la conception de machines silencieuses.

Prérequis

Aucun prérequis technique

PRÉCONISATIONS

Après

F33 - Isolation vibratoire et suspension mécanique des machines

CONTACTS

Renseignements inscription

Service Formation +33 (0)970 820 591 formation@cetim.fr

Responsable pédagogique

Michel Besombes

En situation de handicap?

Consulter notre référent handicap pour étudier la faisabilité de cette formation à referent.handicap@cetim.fr

Cette formation

Même thématique

Programme de la formation

- → Rappel des notions générales sur l'acoustique et la génération du bruit des machines :
 - > bruit aérien/solidien/fluidien;
 - > chaîne excitation/transfert/rayonnement;
- > principaux paramètres acoustiques (célérité sonore, longueur d'onde, impédance spécifique du milieu, etc.).
- → Notions générales pour l'étude vibratoire des systèmes mécaniques :
 - > déplacement/vitesse/accélération;
 - > dynamiques des systèmes mécaniques (masse, raideur, amortissement, modes propres);
 - > systèmes à plusieurs degrés de liberté;
 - > aspects métrologiques de base (amplitude/valeur efficace/phase/accélérométrie/fonction de transfert).
- → Approche générale des techniques de réduction du bruit.
- → Mécanismes d'excitation vibratoire des machines : (origine mécanique, électrique, hydraulique).
- → Techniques pratiques d'isolation et d'amortissement acoustique et vibratoire.
- → Principe de génération du bruit des composants : (ventilateur, transformateur, moteur électrique, engrenages, échappement, etc.).
- → Principaux outils d'aide à la conception vibro-acoustique :
 - > règles pratiques de conception acoustique des composants, normes et guides ;
- > intervention sur les forces d'excitation, désadaptation des impédances mécaniques, facteurs de rayonnement, règles simplifiées de calcul et exemples pratiques ;
 - > exemples de logiciels dédiés.

