POMPES ET INSTALLATIONS DE POMPAGE : « L'ESSENTIEL »

Choisir le type de pompe en fonction de l'application et optimiser leur fonctionnement en respectant les règles appropriées. Au cours de ce stage très « interactif », de nombreuses pompes sont présentées.

Présentation de la formation

Objectifs pédagogiques

- → Connaître et comprendre les principales lois de la mécanique des fluides
- → Connaître le principe et l'anatomie des pompes centrifuges et volumétriques.
- → Connaître les cas d'utilisation et les limites des principales pompes.
- → Savoir lire les courbes.

Méthodes pédagogiques

Exposés et démonstrations pratiques. Mix de méthode démonstrative et interrogative. Travaux sur banc d'essais.

Compétences visées

- Lire et comprendre les catalogues et en particulier les courbiers
- Établir un cahier des charges et choisir la pompe la mieux adaptée à une application
- Réaliser un calcul de pertes de charge et vérifier le NPSH
- Vérifier le bon dimensionnement d'une installation de pompage
- Donner les consignes pour bien installer et bien utiliser une pompe
- Interpréter les principaux dysfonctionnements : pertes de débit, cavitation, etc.

Moyens d'évaluation

Un contrôle continu des acquis est effectué au fil de l'eau par l'animateur. Un contrôle formel est effectué en relation avec les objectifs.

Profil du formateur

Messieurs Alain Lundhal, Louis Symoens ou l'un des formateurs qualifiés d'EUREKA Industries

Personnel concerné

Ingénieurs, techniciens, AM, technico-commerciaux, acheteurs des services : bureaux d'études, travaux neufs, SAV, maintenance, fiabilisation, etc.

Prérequis

Des connaissances de base du niveau brevet des collèges sont préférables pour profiter pleinement de ce stage.

Ref: EU270
DISPONIBLE EN INTRA

SESSION EN 2026

Région parisienne

▼ 28h - 2100 € HT

- → du 27/01 au 30/01/2026
- → du 17/03 au 20/03/2026
- → du **09/06** au **12/06/2026**
- → du 15/09 au 18/09/2026
- → du 08/12 au 11/12/2026

Colmar

- **∑** 28h 2100 € HT
- → du 17/02 au 20/02/2026
- → du 13/10 au 16/10/2026

Lyon

- **∑** 28h 2100 € HT
- → du 24/03 au 27/03/2026
- → du **24/11** au **27/11/2026**

Arras

- **∑** 28h 2100 € HT
- → du **19/05** au **22/05/2026**

Marseille

- **∑** 28h 2100 € HT
- → du 19/05 au 22/05/2026

Brest

- **∑** 28h 2100 € HT
- → du 23/06 au 26/06/2026

D'autres sessions sont disponibles sur le site cetim.fr

PRÉCONISATIONS

Après

EU271 - Pompes centrifuges et installations de pompage: spécialisation

CONTACTS

Renseignements inscription

Service Formation +33 (0)970 820 591 formation@cetim.fr

Responsable pédagogique

Etienne Yvain

En situation de handicap?

Consulter notre référent handicap pour étudier la faisabilité de cette formation à referent.handicap@cetim.fr

EN PARTENARIAT AVEC

Programme de la formation

- → Bases pratiques de mécanique des fluides
 - > Grandeurs et les unités (débits, pression, etc.).
 - > Viscosité cinématique et dynamique, tension de vapeur, etc.
 - > Lien débit/pression et notion de pertes de charge, etc.
 - > La courbe de réseau et ses variations (tartre, bouchage, etc.).
- → Présentation générale des pompes centrifuges, volumétriques, à hélice et à canal latéral
 - > Anatomie générale.
 - > Cas d'utilisation et grands critères de choix.
- → Étude technique approfondie des pompes centrifuges
 - > Rappel du principe de fonctionnement.
 - > Les différentes géométries (surface, immergée, monobloc, etc.).
 - > La désignation normalisée (ex EN733 50-250).
 - > Les poussées et les systèmes d'équilibrage.
 - > Les différentes roues et leurs applications (radiale, helico, ouverte, etc.).
- > Principes et lectures des courbes de pompe (débit/pression/puissance/rendement/etc.) ; zones de la courbe et BEP.
 - > La notion de coût énergétique.
- > Banc d'essais : tracé de la courbe de pompe ; mise en évidence de l'amorçage et des pertes de charges ; observation des paramètres débit, pression, intensité.
- → Étude technique approfondie des pompes volumétrique
- > Rappels des principes de fonctionnement des principaux types (à engrenages, à palettes, à lobes, double et triple vis, péristaltique, pneumatique à membranes, etc.).
 - > Le bipasse et les protections (marche à sec, etc.).
 - > Les fuites internes et la lecture des courbes.
 - > Les pompes doseuses : présentation et particularités.
- → La cavitation et notion de NPSH : comprendre, remédier, expliquer
 - > Aspiration, amorçage ? Bien faire la différence.
 - > Notion de cavitation et méthode de contrôle.
 - > NPSH et NPIP dispo et requis.
 - > Méthode pragmatique et simple de contrôle terrain du risque de cavitation.
 - > Banc d'essais : mise en évidence de la cavitation et remèdes.
 - > Banc d'essai : visualisation de la cavitation et remède.
- → La pompe dans son réseau
 - > Point de fonctionnement d'une installation .
 - > Pression d'aspiration de refoulement et la « deltaP » ou HMT.
 - > Optimiser le choix hydraulique de la pompe.
 - > Détermination graphique du point de fonctionnement.
 - > Exercices pratiques de calcul de pertes de charge et de tracé de courbe réseau.
- > Exercices pratiques de choix et dimensionnement pompes et moteurs : Circuits ouverts (transferts, ,...) circuits fermés (boucle de refroidissement....)
- → Diagnostic et symptômes (sous forme d'exercices ludiques)
 - > Perte de débit, chute de pression, défaut d'amorçage, débit irrégulier ... surcharge moteur,
- → Les principales règles de l'art de la conception d'une installation
 - > La géométrie à respecter
 - > Les pièges à éviter :
 - > Contraintes mécaniques (dilatation des tuyauteries,)
 - > Défauts hydrauliques (convergents, coudes, siphons, ,...)
- → Les fondamentaux des étanchéités dynamiques
 - > Principe, terminologie, avantages inconvénients, limites d'utilisation.
 - > Garnitures mécaniques
 - > Tresse
 - > Entraînements magnétiques
 - > Etanchéités hydrodynamiques

© Eureka Industries 1989>2020

