ANALYSE ET DIAGNOSTIC DES MACHINES TOURNANTES

Interpréter les résultats d'une mesure vibratoire et diagnostiquer une machine

Ref: N50
DISPONIBLE EN INTRA

SESSION EN 2026

Senlis

- **∑** 21h 1949 € HT
- → du 09/06 au 11/06/2026
- → du 24/11 au 26/11/2026
- → du 01/12 au 03/12/2026

Présentation de la formation

Objectifs pédagogiques

- → Interpréter les résultats de la mesure vibratoire.
- → Réaliser le diagnostic vibratoire des machines.

Méthodes pédagogiques

Présentations et Travaux Pratique en laboratoire. Partage d'expérience avec les stagiaires

Compétences visées

Interpréter les résultats d'une mesure vibratoire et diagnostiquer une machine

Moyens d'évaluation

Questionnaire à choix multiples (QCM)

Profil du formateur

Formateur expert technique dans le domaine de l'analyse vibratoire

Personnel concerné

Ingénieurs, techniciens des services d'essais, de bureaux d'études, de maintenance et de contrôle qualité

Prérequis

Aucun prérequis technique

CONTACTS

Renseignements inscription

Service Formation +33 (0)970 820 591 formation@cetim.fr

Responsable pédagogique

Thomas Vervaeke

En situation de handicap?

Consulter notre référent handicap pour étudier la faisabilité de cette formation à referent.handicap@cetim.fr

Même thématique

Programme de la formation

- → Intérêt du diagnostic des machines par l'analyse vibratoire.
- → Rappel des notions de base en vibrations :
 - > vocabulaire et grandeurs physiques ;
 - > le système à un et plusieurs degrés de liberté (masse, raideur, amortissement, résonance, etc.).
- → Capteurs et chaînes de mesure :
 - > technologies de mesures ;
 - > choix des points de mesure, fixation des capteurs, précautions d'instrumentation.
- → Travaux pratiques: instrumentation et analyse vibratoire d'une machine tournante (touret).
- → Contrôle vibratoire des machines :
 - » « l'intensité vibratoire » ;
 - > la normalisation et ses recommandations.
- → Diagnostic des machines :
 - > les défauts : étude des principales sources de vibrations, des instabilités et de leurs effets ;
 - > l'analyse spectrale et l'analyseur de spectre ;
- > les techniques complémentaires de traitement du signal (analyse d'enveloppe, cepstre, analyses temps-fréquences, etc.).
- → Travaux pratiques :
 - > l'analyseur et le diagnostic vibratoire ;
 - > étude de cas sur machine tournante.
- → Suivi d'ordre pour les machines tournantes :
 - > les différentes techniques ;
 - > l'échantillonnage synchrone, le ré-échantillonnage ;
 - > les représentations associées ;
 - > les applications.
- → Équilibrage : principe et démonstration en salle.
- → Caractérisation dynamique des structures :
 - > phénomènes de résonance ;
 - > mesures de fonctions de transfert ;
 - > analyse modale expérimentale.
- → Travaux pratiques sur une structure mécanique :
 - > recherche de résonance;
 - > analyse modale expérimentale par excitation au choc.

