

Innover en mécanique

CETIM JEC INNOVATION AWARDS

in partnership with

tooling expert

Some technical informations

Conception

D

Final composite design

Process description

General process :

Ejection

Tool concept : To form two organosheets simultaneously, then to put them face to face for welding (principle never used on composite parts reinforced with continuous fibres)

Process description

Parallelization of successive cycles			
	previous	current	next
	cycle	cycle	cycle

IR Oven		heating								heating			
back frame	sheet installation	heating	go under press				go to back		sheet installation	heating	go under press		
Press				close	Consolidation	open						close	Consolidation
Tool left forming zone				sheet on position				rotation				sheet on position	
Tool right forming zone				sheet on position				rotation		ejection of piece		sheet on position	
Tool welding zone		heating			welding					heating			welding
front frame	go under press	heating	go to front						go under press	heating	go to front		
cycle time (sec)	5	Thickness dependant	5	2	30	2	5	10					

Total cycle time of 1 minute + heating time :

- Heating for welding < 60 sec (only the surface)
- Heating of sheet 5-10min for t=3mm, avoidable with multi-sheet oven

Process description

Design of the rotative tool

Sheet in stamping position

Heating for welding thanks to the front frame after rotation

After a new press closure, the final piece on the centre and two new stamped sheet ready for the next tool rotation.

CETIM JEC INNOVATION AWARDS

Direct integration of the bushing in the composite sheet

Simultaneous overmoulding of the two bushings on the composite sheet

- Control of center distances
- Manufacturing in line with low cost/highly controlled process
- Pre-compression of rubber by the injection pressure of the plastic (increase of the lifetime of the joint)
- Assembly with good mechanical performance and without process constraint on the sheet (unlike mounting by force)

Realisation

The innovative tool installed on the CETIM automated press

Realisation

The innovative thermoplastic composite suspension arm

Innover en mécanique