

Modélisation d'une chaine de mesure pour estimer les incertitudes de mesure dimensionnelle en tomographie : application aux pièces de fabrication additive

Malik Enniafa

INSA-LVA – Valérie Kaftandjian (directrice de thèse) LNE – Anne-Françoise Obaton (codirectrice de thèse) Cetim – Sébastien Brzuchacz (encadrant en entreprise)

13/02/2023

Sommaire

- Introduction
- La chaine tomographique au service du contrôle dimensionnel
- Travail effectué
- Apport de la thèse
- Conclusion

<u>cetim</u>

Introduction

Introduction

- Contexte : besoins industriels
- Objectif de la thèse : modéliser complètement toute la chaine de mesure dimensionnelle par tomographie
 - Évaluer l'influence des paramètres
 - Valider les performances
 - Proposition d'une pièce de référence
 - Recommandations de bonnes pratiques

An adaptive thresholding algorithm for porosity measurement of additively manufactured metal test samples via X-ray computed tomography. Joseph Lifton, Tong Liu. 2021.

La chaine tomographique au service du contrôle dimensionnel

Cetim

I_0 I_t Processus d'acquisition Principe : numérisation du coefficient d'atténuation Paramétrage : détecteur plan, axes et source mini/µm foyer Corrections possibles : des projections, artefacts, filtrages X Volume reconstruit : cylindrigue et voxeligue slice - XY Algorithme utilisé : FDK – 1984 45000 200 -40000 400 Detector 4 Rotation 35000 axis 600 -**FDK** - 30000 800 -- 25000 X-ray source 1000 20000 SOD 0 200 400 600 800 1000 SDD

Protocole de mesures dimensionnelles en tomographie (1)

Processus d'obtention de la surface

Définition de la surface à extraire :

Selon les niveaux de gris

Processus d'obtention de la surface

- Algorithme d'extraction de la surface :
 - Sur quels paramètres je peux jouer pour extraire au mieux la surface ?
 - De manière plus ou moins locale, considération des orientations 3D quelconques, etc.
 - Orienté mono matériaux (thèse)

Les 8 sommets des cubes sont les centres des 8 voxels connexes, leur valeur est un niveau de gris (original ou segmenté)

fficient implementation of Marching Cubes' cases with pological guarantees. Thomas Lewiner, H´ Elio Lopes, ntonio Wilson Vieira And Geovan Tavares. 2003.

Case

Case 3.2

- Limité aux moindres carrés, car peu sensible au bruit très présent en tomographie (et méthode de mesure par champ plus généralement)
 - Pas/Peu d'investigation du filtrage statistique qui peut dégrader la mesure
 - Inclusion d'une méthode de partitionnement utilisant les niveaux de gris locaux

Travail effectué

Étude bibliographique

Fonctionnement de la chaine de mesure

- Tomographie (principe + matériel)
- Traitements numériques (prétraitements, reconstructions, corrections, obtention de la surface en données 2D/3D...)
- Méthode de détermination des incertitudes : iso 15530
 - Prise en compte du biais ou de sa correction
- Influence des paramètres
 - Par simulation (récent) ou expérimental
 - Développement d'une méthode, algorithme ou procédure
 - Inconvénient : présentation des résultats finaux sans explications ou détails sur les impacts au niveau des différentes étapes de la chaine de mesure
- Critères (dont ndg) pour estimer la qualité de la mesure

Studies of dimensional metrology with x-ray cat scan. Hermin Villarraga Gómez. 2018.

Novel dedicated reference standards for the qualification of radiography-based computed tomography simulation software. Fabrício Borges de Oliveira, Tamara Reuter, David Plotzki, Markus Bartscher, Tino Hausotte. 2022.

atim

Étude de l'influence des paramètres

5M de la mesure dimensionnelle en Tomographie

Méthodes d'évaluation des incertitudes

Les démarches d'estimation des incertitudes peuvent être de différents types :

Analytique : propagation des incertitudes de chaque paramètre dans un modèle analytique

GUM 1995 avec des corrections mineures. **BIPM, 2008**

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \left[\frac{1}{2} \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right)^2 + \frac{\partial f}{\partial x_i} \frac{\partial^3 f}{\partial x_i \partial x_j^2} \right] u^2(x_i) u^2(x_j) \quad \begin{array}{c} \text{avec les} \\ \text{covariances} \end{array}$$

Simulé : propagation des densités de probabilité des paramètres, dans un programme simulant le processus de mesurage

Coordinate Metrology by Traceable Computed Tomography. Müller Pavel. 2013.

Empirique : comparaison à une pièce étalonnée par un moyen métrologique (plus « précis »)

Mixte

Étude de l'influence des paramètres

Etude paramétrique par simulation (CIVA)

- Paramètres des composants du tomographe à évaluer :
 - Positionnement des éléments clés
 - Source (spectre, foyer)
 - Détecteur (pitch, scintillateur, bruit photonique...)
- Identifier les biais de la simulation
 - Ex: maillage de l'objet
- Influence de la détermination de la surface : définition et 5°

Apport d'un partitionnement adapté aux données voxelliques

- Influence de la nature et de la position des mesurandes
 - Courbure, interne/externe, « enveloppe matière », orientation…

Integrated Quality Control of Precision Assemblies using Computed Tomography. Stolfi Alessandro. 2017.

3

etim

Processus d'obtention de la surface – définitions

Définitions utilisées dans la bibliographie :

- Iso50, milieu entre les 2 populations en considérant leur position par leur maximum
 - Variante Obrist considère les aires des « gaussiennes » de l'air et du matériau
- Otsu, très utilisé en imagerie (minimisation des variances intra-population)
 - Yen et Li émergent aussi en imagerie, plutôt plus performants mais pas dans nos tests en tomographie (et bien plus lourds)

etim

Processus d'obtention de la surface – Paramètres

- Débruitage du volume (avant ou après segmentation)
- Création des points de la surface de l'objet (LUT Chernyaev 1995)
 - Frontière obtenue subvoxelique depuis algorithme Marching Cubes 1987
- Affinement de la frontière par ajustement de la position des points selon l'orientation de la surface locale
- Possibilité de choisir entre affinement global (volume entier) ou local (mesurande, sous volume, pour chaque point)

etim

Suite de la thèse

Proposition de pièces de référence pour le contrôle dimensionnel en tomographie

Utilisation d'une ball plate (plaque à billes)

- Remplace l'usage de la tige à 2 billes pour corriger la taille de voxel
- Réduction des erreurs grâce aux mesures dans différentes orientations (« reversal method »)
- Suffisamment stable dans le temps
- Mesure dans le champ de projection rend compte des distorsions dans le volume reconstruit
- Nécessité de développer une pièce de référence avec mesurandes et cavités internes
 - Les pièces à scanner devront être similaires
 - En atténuation, géométrie, transmission minimale, SNR/CNR... à définir en simulation.

Apport de la thèse

Apport de la thèse

- Etude de l'influence des paramètres de la chaine de mesure tomographique incluant l'extraction de la surface sur les images reconstruites
- Maitrise complète de l'extraction de surface en développant un algorithme spécifique (pas d'utilisation de boîte noire)
- Elaboration d'une démarche pour déterminer les incertitudes de mesure d'un équipement (en incluant le logiciel de traitement)

Etat d'avancement

Conclusion

Merci de votre attention

Interactions avec la matières

- Diffusion de Rayleigh
- Diffusion de Compton
- Absorption photoélectrique
- Production de pair

Représentation polaire des sections efficaces différentielles (en barns / stéradian) de diffusion de Compton (gauche) et diffusion Rayleigh (droite) pour l'aluminium.

Processus d'acquisition

- Les artefacts :
 - Bruit du détecteur et des corrections numériques
 - Dont les artefacts en anneaux ou le BHC
 - Pénombre : engendre un flous géométrique
 - Dans une moindre limite : la diffusion des photons optiques dans le scintillateur du détecteur

FIG. 3.4 – Contribution à une mesure $\phi'(M)$. $\phi'(M)$ est la somme de ϕ , la part du rayonnement incident sur le capteur ϕ_{inc} absorbée par le scintillateur, la part ϕ_F diffusée dans les filtres, le rétro diffusé ϕ_{BS} et le diffusé optique ϕ_{Op} .

Cetim

Processus d'acquisition

Les artefacts :

- Causé par le diffusé :
 - Éclaircissement des bords
 - Effet cuvette au centre de la matière
 - Ombrage, en forte variation d'épaisseur
- EEGE (Exponential Edge-Gradient Effect) : il est la conséquence d'une différence de valeur entre es intégrales de lignes d'atténuation de la modélisation et les intégrales volumiques de l'acquisition réelle
- Etc. (mécanique)

Exemple d'ESF individuelles extraites : Intérêt du 3D

3/02/2023

etim

Ajustement des positions de points

Cetim

Biais de la simulation

Rayon de courbure biaisé par le maillage de la surface paramétrique (CAO)

- Absence de flou
- ➔ artefacts très contrasté

cetim

Taille de voxel = 84,999µm

Application des protocoles sur CadCube

Mesurande M2 = diamètre du cylindre (MMT rèf = 15,233 mm) :

3/02/2023

	Glob	oal (volume	entier)		Local au cylindre					
		Non triés		Triés selon pente			Non triés		Triés selon pente	
	Méthode		Écart	M2 (mm)	Écart	t Méthode N		Écart		Écart
		M2 (mm)	absolu		absolu		M2 (mm)	absolu	M2 (mm)	absolu
			(µm)		(µm)			(µm)		(µm)
Cylindre entier	PmaxGl_MC	15,315	82	15,229	-4	PmaxLc_MC	15,263	30	15,217	-16
	PmoyGl_MC	15,321	88	15,229	-4	PmoyLc_MC	15,307	74	15,226	-7
	OtsuGl_MC	15,361	128	15,237	4	OtsuLc_MC	15,256	23	15,215	-18
	Pmax3sGl_MC	16,206	973	15,395	162	Pmax3sLc_MC	15,513	280	15,262	29
	PmaxGl_Hyst_0.5_MC	15,345	112	15,383	150	PmaxLc_Hyst_0.5_MC	15,313	80	15,202	-31
Moitié côté interne	PmaxGl_MC	15,389	156	15,250	17	PmaxLc_MC_patrInt	15,153	-80	15,193	-40
	PmoyGl_MC	15,397	164	15,251	18	PmoyLc_MC_patrInt	15,217	-16	15,211	-22
	OtsuGl_MC_patrInt	15,451	218	15,262	29	OtsuLc_MC_patrInt	15,228	-5	15,215	-18
	Pmax3sG1_MC_patrInt	16,542	1309	15,767	534	Pmax3sLc_MC_patrInt	14,932	-301	15,119	-114
	PmaxGl_Hyst_0.5_MC_patrInt	15,456	223	15,430	197	PmaxLc_Hyst_0.5_MC_patrInt	15,153	-80	15,180	-53
Moitié côté externe	PmaxGl_MC_patrExt	15,227	-6	15,211	-22	PmaxLc_MC_patrExt	15,319	86	15,255	22
	PmoyGl_MC_patrExt	15,228	-5	15,212	-21	PmoyLc_MC_patrExt	15,290	57	15,243	10
	OtsuGl_MC_patrExt	15,245	12	15,221	-12	OtsuLc_MC_patrExt	15,255	22	15,226	-7
	Pmax3sGl_MC_patrExt	15,381	148	15,278	45	Pmax3sLc_MC_patrExt	15,619	386	15,339	106
	PmaxGl_Hyst_0.5_MC_patrExt	15,214	-19	15,235	2	PmaxLc_Hyst_0.5_MC_patrExt	15,316	83	15,233	C

Les mesures **Joutesparsierieseine**s améliorent Les mesures s**Læs élicares** sont négatifs du cylindre sont plus éloignées grandement globalement de la référence que la partie Le coté interne donne des exte**un** éloignées point de la fron**éierets bjég atifs**on causé par le bruit

Application des protocoles sur CadCube

Mesurande M2 (entier ou moitiés) = diamètre du cylindre (MMT rèf = 15,233 mm) :

Dilatation		Local au cylindre							
thermique			Non	triés	Triés selon pente				
~ 3µ	m max	Méthode	M2 (mm)	Écart absolu (µm)	M2 (mm)	Écart absolu (µm)			
Pmax	Global	PmaxGl_MC	15,315	82	15,229	-4			
	Local	PmaxLc_MC	15,263	30	15,217	-16			
	Cylindre entier	PmaxGL_MC_PtIflx_1D_MC5iter	15,317	84	15,230	-3			
		PmaxGL_MC_PtIflx_3D_MC5iter	15,332	99	15,242	9			
		PmaxGL_MC_PtIflx_3Dlis_MC5iter	15,333	100	15,242	9			
Deint	Moitié côté interne	PmaxGL_MC_PtIflx_1D_MC5iter_patrInt	15,381	148	15,243	10			
POIIIL		PmaxGL_MC_PtIflx_3D_MC5iter_patrInt	15,364	131	15,230	-3			
трелоп		PmaxGL_MC_PtIflx_3Dlis_MC5iter_patrInt	15,363	130	15,231	-2			
	Moitié côté externe	PmaxGL_MC_PtIflx_1D_MC5iter_patrExt	15,253	20	15,236	3			
		PmaxGL_MC_PtIflx_3D_MC5iter_patrExt	15,261	28	15,241	8			
		PmaxGL_MC_PtIflx_3Dlis_MC5iter_patrExt	15,261	28	15,240	7			
	Cylindre	PmaxLc_isoESF_MC_3iter	15,301	68	15,226	-7			
T 50 \	entier	PmaxLc_isoESF_Hyst0.5_MC_3iter	15,424	191	15,213	-20			
Iso 50 a	Moitié côté	PmaxLc_isoESF_MC_3iter_patrInt	15,258	25	15,222	-11			
parar aes	interne	PmaxLc_isoESF_Hyst0.5_MC_3iter_patrInt	15,539	306	15,235	2			
Plateaux	Moitié côté	PmaxLc_isoESF_MC_3iter_patrExt	15,277	44	15,237	4			
	externe	PmaxLc_isoESF_Hyst0.5_MC_3iter_patrExt	15,208	-25	15,201	-32			

Utilisation du point d'inflexion comme seuil (local aux points) meilleur dans l'ensemble (seuil initial = Pmax)

- Pour ce dernier, les ESF mesurées en 3D sont fortement similaires et probblement meilleur que 1D
- Utilisation du milieu des plateau de l'ESF permet un seuillage assez bon