Characterization of overmolded thermoplastic composite joints and sizing methods for hybrid structures

Xiaofei SONG

Academic supervisors: Federica Daghia **Christophe Cluzel**

18/01/2023

Journées des doctorants CETIM

CETIM supervisor: **Yannick Elie**

What is Quilted Stratum Process

- Thermoforming of thermoplastic composite parts made up of long fiber patches
- Overmolded elements in short fibers

Long fiber patches can be prepared before \rightarrow <u>fast process</u>

Difficulties with the mechanical behavior of the interface long/short fibers

Sizing (criterion?) + characterization

Experimental results from CETIM

Tensile tests on T joint samples

Demonstrator of the process

LMP\$

Long/short fibers interface failure

Motivations

Motivations

Objectives:

1. Understand the influence of the geometry & material on the behavior of the structure 2. Propose ways/ideas for modeling + sizing method for this kind of joint

LMPS

(cetim

Motivations

Numerical aspect

Hypotheses

- Simulation of the failure -> cohesive zone model (CZM) < Critial en Stiffness</p>

Variables

- Geometry: joint shape, laminate thickness, boundary condition
- Material: parameters of the cohesive law

Experimental aspect

- Microscopy & CT scan observation of different samples
- Characterization: climbing drum peel (CDP), end notched flexure (ENF)
 - Manufacturing difficulties of plane samples
 - ➔ search for the parameters of the cohesive law
- Validation: tensile tests on T joints

Critial energy release rate

Maximum stress

(1)
(2)
* Clarify the role of each parameter in the global behavior
* Identify the parameters for the cohesive law
* Validate the modeling & simulation approach

Numerical aspect

Hypotheses

- Simulation of the failure -> cohesive zone model (CZM)
- Snap-back problem → dissipation-driven method [Gutiérrez, 2003]

Variables

- Geometry: joint shape, laminate thickness, boundary condition
- Material: parameters of the cohesive law

Experimental aspect (in progress)

- Microscopy & CT scan observation of different samples
- Characterization: climbing drum peel (CDP), end notched flexure (ENF)
 - Manufacturing difficulties of plane samples
 - ➔ search for the parameters of the cohesive law
- Validation: tensile tests on T joints

Approach

Clarify the role of each parameter in the global behavior Identify the parameters for the cohesive law
Validate the modeling & simulation approach

Microscopy & CT scan: T joint samples

Observation of T joint samples: definition of the coordiante system

Microscopy & CT scan: T joint samples

- Different types of defects observed
- → To be taken into account in future simulations
- → Could be potentially improved in the process

Concept

Relates the interface forces σ to the displacement

jump $\llbracket u \rrbracket$ by a constitutive law

[Bao and Suo, 1992]

Characteristic length of the process zone

$$L_0 \propto \frac{\delta_c E}{\sigma_0} = \frac{G_c E}{\sigma_0^2}$$

where

 δ_c : separation limit

E: Young modulus

 G_c : critical energy release rate

- Cox,2005]

Cohesive zone model

Crack length/diameter of the hole... a

$L_0 \approx 1$ mm for thermosetting materials [Yang et

→ maybe large-scale bridging in our thermoplastic case

2D model on Abaqus

• Symmetry $\rightarrow \frac{1}{2}$ of the structure is simulated

Variables

- Geometry: joint shape, laminate thickness, boundary condition
- Material: parameters of the cohesive law G_c , σ_0
 - Range: thermosetting, thermoplastic

 σ_0 : 10 MPa~80 MPa $G_c: 350 \text{ J/m}^2 \sim 1050 \text{ J/m}^2$

Available experimental data [CETIM]

2D model on Abagus

Evaluation criteria

Maximum force flux=maximum load/out-of-plane thickness=F/a

Size of the process zone L_0

SDEG (Avg: 75%) +1.000e+00 +9.167e-01 +8.333e-01 +7.500e-01 +5.667e-01 +5.833e-01 +5.000e-01 +4.167e-01 +3.333e-01 +2.500e-01 +1.667e-01 +8.333e-02 +0.000e+00
--

Simulations

Global stiffness: slope of force-displacement curve

Definition of the geometrical variables

Definition of joint shape

Definition of thickness

Definition of boundary conditions

11

Example of simulation results

Size of the process zone>width

Short fibers

Summary of simulation results

Example of bending influence • $G_c = 1050 \text{ J/m}^2$, $\sigma_0 = 80 \text{ MPa}$, Same laminate thickness & joint shape

y condition	Maximum force flux (N/mm ²)
nding	87.8
ending	136.7

56% nigner

Importance of being able to control the bending in future tests Joint shape → Attention is needed during the design stage

Tensile test

Two T joints glued together to remove the bending

Results

- **Glue** failure
- **Stiffness >> CETIM experiments**
- Same order of magnitude in force reached 🙂

2-5 kN in CETIM experiments with difficulties in the control of bending

Confirmation of simulation results

Test setup

Experiments: validation test

Microscopy & CT scan: plane samples

Observation of plane samples for CDP tests: Typical defects L210 mm×W20 mm

Insertion in UNprecracked zone

Experiments: characterization tests

- **Climbing Drum Peel (CDP) test**
 - Failure mostly in mode I
 - Initially designed for sandwiches and adapted to monolithic composites [Daghia and Cluzel, 2015]
 - Imposed kinematics -> more stable crack propagation compared to classical DCB test
 - **Typical force-displacement curve:**

CDP test setup

Experiments: characterization tests

- **Climbing Drum Peel (CDP) test**
 - Orders of magnitude of G_c : 800 1000 J/m² and 1500 1700 J/m² depending on the stacking sequence
 - Consistent with the chosen range in the simulations
 - Robust test 🕑
- End Notched Flexure (ENF) test (in progress)

Reduces the friction between the two arms

→ Need to clarify the modal participations

CDP/ENF tests in progress

- Test setup design for tensile tests in progress
- Tensile tests on T joint samples
- T joint samples with different joint shape

. . . .

Perspectives

THANK YOU FOR YOUR ATTENTION!

école———
normale ———
supérieure ———
paris-saclay

