

FLEXIBLE ORGANIC PIEZOELECTRIC TRANSDUCERS FOR ULTRASOUND GENERATION

Ewen Raoul, Samuel Rodriguez, Damien Thuau, Isabelle Dufour, Anissa Méziane, Fan Zhang

Flexible transducers

• Less efficient

- Adaptability
- Embedded to structures
 → in situ monitoring
- Controllable design
 → tuned to anisotropy

- rigid piezo
- More efficient

- Intrusive
- « dead zone »

context SHM (Structural Health Monitoring)

SHM (Structural Health Monitoring)

- Domain of Non Destructive Testing (NDT)
- In-situ and real-time SHM
- Ultrasonic imaging and acoustic emission from piezoelectric polymers based transducers
- Developement of **embedded piezoelectric transducers** directly **into the structure** to inspect

- Piezo ink : P(VDF-TrFE)
- Electrode ink : PEDOT:PSS
- Substrate : PEN/PET

- Piezo ink : P(VDF-TrFE)
- Electrode ink : PEDOT:PSS
- Substrate : PEN/PET

- Piezo ink : P(VDF-TrFE)
- Electrode ink : PEDOT:PSS
- Substrate : PEN/PET

- Piezo ink : P(VDF-TrFE)
- Electrode ink : PEDOT:PSS
- Substrate : PEN/PET

Multilayers screen printing :

- Piezo ink : P(VDF-TrFE)
- Electrode ink : PEDOT:PSS
- Substrate : PEN/PET

Transducer thickness $\sim 100 \ \mu m$

Flexible transducers

P(VDF-TrFE)

Semicrystalline copolymer

- Crystalline phase : piezoelectric effect
- Amorphous phase : flexibility

Les moments dipolaires (voir paragraphe 2.3) sont représentés schématiquement sur la figure. E_c est le champ coercitif, P_r la polarisation rémanente et AB la courbe de première polarisation.

9

Electric field poling (> Ec)

- Orientation of local electric dipole
- Effective piezoelectrci effect

* « Matériaux piézoélectriques : les céramiques oxydes à base de métaux de transition » par **Philippe PAPET,** Professeur à Polytech Montpellier, Université Montpellier 2

PVDF-TrFE piezo transducers making

Pitch & Catch

PZT & PVDF-TrFE :

• Aluminium plate of 2 mm

PVDF-TrFE

- Diameter = 1 cm
- 2 PVDF-TrFE layers = 4 μ m

<u>PZT</u>

- Diameter = 3 cm
- Thickness = 2,13 mm
- Emission : f0 = 100 kHz, Nperiods = 5 à 130 Vpp
- Receiving : band pass filter, + 50 dB

PVDF-TrFE : emitting & receiving

PVDF-TrFE : emitting & receiving

PVDF-TrFE : emitting & receiving

12,5 mV between 2 PVDF-TrFE 600 mV with PZT

Averaging 10 000 times

OPTIMISATION

Geometry

Design for an application : Conception, modeling & simulation

Guided waves

<u>So mode</u> symetric displacement, compression <u>Ao mode</u> antisymetric displacement, flexion

Geometric optimisation (design)

FEM, Temporal simulation with PZT Axisymetric model around r = 0

PZT FEM Simulation : equations, BC

<u>Input</u>: electric potential V,
 create electric field to the ground

equations of piezoelectric coupling <u>Output</u>: acoustic displacement in plate

- **PZT/plaque** interface : stress/displacement continuity
- Others interfaces : free or axial symetry
- No losses (dielectric/mecanic)

PZT FEM Simulation : meshing

ddl : 340 000

Calcul duration ~ 1 min

Geometric optimisation (design)

FEM, Temporal simulation with PZT Axisymetric model around r = 0

3D LASER vibrometer

Field measurement of 3D displacement

- On complex surfaces

Video : Out of plane displacement field on the plate, **emitted by PZT transducer**

Comparison : PZT, 100 kHz

22

Comparison ponctuelle : PZT, 100 kHz

Comparison ponctuelle : PZT, 100 kHz

Comparison : PZT, 100 kHz

Comparison : PZT, 100 kHz

- How affect the piezoelectric and mecanical parameters on system ?
- Take losses into acount

- Influence of coupling plate
- Electro-mecanical impedance adaptation (equivalent scheme ?)

CONCLUSION

OPTIMISATION

- PVDF-TrFE modeling/optimisation
- Improve comparisons
 (plate parameters)
- Field characterization with LASER vibrometer

Geometry

Design optimisation

Efficiency

Limits of this kind of transducers

PRINTED ORGANIC PIEZOELECTRIC TRANSDUCERS FOR ULTRASOUND GENERATION

Ewen Raoul, Samuel Rodriguez, Damien Thuau, Isabelle Dufour, Anissa Méziane, Fan Zhang

Thank you for your attention

Tableau 2 – Expressions des grandeurs et notations utilisées pour décrire le couplage électromécanique						
Grandeurs Écritur		Signification	Ordre du tenseur	Notation matricielle	Unité	Dimensions (ligne × colonne)
Mécanique	x _{ij} X _{ij} c _{ijkl} s _{ijkl}	Déformation Contrainte Rigidité Compliance	2 2 4 4	$egin{array}{c} x_I \ X_I \ c_{IJ} \ s_{IJ} \end{array}$	N/m ² N/m ² m ² /N	$6 \times 1 6 \times 1 6 \times 6 6 \times 6$
Électrique	E _i Di ε _{ij} βij	Champ électrique Induction Permittivité diélectrique Imperméabilité diélectrique	1 1 2 2	E _i D _i ε _{ij} β _{ij}	V/m C/m ² F/m m/F	3 × 1 3 × 1 3 × 3 3 × 3
Piézoélectrique	d _{ijk} g _{ijk} e _{ijk} h _{ijk}	Coefficient piézoélectrique Coefficient piézoélectrique Coefficient piézoélectrique Coefficient piézoélectrique	3 3 3 3	d _{iJ} giJ e _{iJ} h _{iJ}	C/N ou m/V Vm/N ou m ² /C C/m ² ou N/Vm V/m ou N/C	3×6 3×6 3×6 3×6

« Matériaux piézoélectriques : les céramiques oxydes à base de métaux de transition » par **Philippe PAPET** Professeur à Polytech Montpellier Université Montpellier 2

	Tableau 3 – Différents jeu			
Variables indépendantes	Notation tensorielle <i>i, j, k, l</i> = 1, 2, 3	Notation matricielle <i>i, j, k</i> = 1, 2, 3 <i>n, m</i> = 1, 2,, 6	Coefficients piézoélectriques <i>i, j, k</i> = 1,2,3	
(X, E)	$D_{i} = \varepsilon_{ij}^{X} E_{j} + d_{ijk} X_{jk}$ $x_{ij} = s_{ijkl}^{E} X_{kl} + d_{kij} E_{k}$	$D_{i} = \varepsilon_{ij}^{X} E_{j} + d_{im} X_{m}$ $x_{n} = s_{nm}^{E} X_{m} + d_{kn} E_{k}$	$d_{ijk} = \left(\frac{\partial D_i}{\partial X_{jk}}\right)_{E,T} = \left(\frac{\partial x_{jk}}{\partial E_i}\right)_{X,T}$	$D_i = \varepsilon_{ij}^X E_j + d_{ijk} X_{jk}$
(<i>X, D</i>)	$E_i = \beta_{ij}^X D_j - g_{ijk} X_{jk}$ $x_{ij} = s_{ijkl}^D X_{kl} + g_{kij} D_k$	$E_i = \beta_{ij}^x D_j - g_{im} X_m$ $x_n = s_{nm}^D X_m + g_{kn} D_k$	$g_{ijk} = -\left(\frac{\partial E_i}{\partial X_{jk}}\right)_{D,T} = \left(\frac{\partial x_{jk}}{\partial D_i}\right)_{X,T}$	$x_{ij} = s^E_{ijkl} X_{kl} + d_{kij} E_k$
(x, E)	$D_{i} = \varepsilon_{ij}^{X} E_{j} + e_{ijk} X_{jk}$ $X_{ij} = c_{ijkl}^{E} X_{kl} - e_{kij} E_{k}$	$D_{i} = \varepsilon_{ij}^{x} E_{j} + e_{in} x_{n}$ $X_{n} = c_{nm}^{E} x_{m} - e_{kn} E_{k}$	$\boldsymbol{e}_{ijk} = \left(\frac{\partial D_i}{\partial \boldsymbol{x}_{jk}}\right)_{\boldsymbol{E},T} = -\left(\frac{\partial X_{jk}}{\partial \boldsymbol{E}_i}\right)_{\boldsymbol{x},T}$	
(<i>x</i> , <i>D</i>)	$E_i = \beta_{ij}^x D_j - h_{ijk} x_{jk}$ $X_{ij} = c_{ijkl}^D x_{kl} - h_{kij} D_k$	$E_i = \beta_{ij}^x D_j - h_{in} x_n$ $X_n = c_{nm}^D x_m - h_{kn} D_k$	$h_{ijk} = -\left(\frac{\partial E_i}{\partial x_{jk}}\right)_{D,T} = -\left(\frac{\partial X_{jk}}{\partial D_i}\right)_{X,T}$	

Matériaux PZT

٠

٠

٠

٠

			Unit		PIC181	
Physical and dielectric properties						
Density		ρ	g/cm ³		7.80	
Curie temperature		T _c	°C		330	
Relative permittivity	in the polarization	$\varepsilon_{33}^T/\varepsilon_0$			1200	
	direction ⊥ to polarity	$\varepsilon_{11}^{T}/\varepsilon_{0}$			1500	
Dielectric loss factor		tan δ	10 ⁻³		3	
Electro-mechanical properties						
Coupling factor		k _p k _t			0.56 0.46	
		к ₃₁ k ₃₃ k ₁₅			0.66 0.63	
Piezoelectric charge coefficient		d ₃₁ d ₃₃ d ₁₅	10 ⁻¹² C/N		-120 265 475	
Piezoelectric voltage coefficient		9 ₃₁ 9 ₃₃	10 ⁻³ Vm/N		-11.2 25	
Acousto-mechanical propertie	s					
Frequency coefficients		N_p			2270	
of the series resonance freque	N ₁	Hz · m		1640		
			N ₃		2010	
		N _t			2110	
Elastic compliance coefficient		S_{11}^{E} S_{33}^{E}	10 ⁻¹² m ² /N		11.8 14.2	
Elastic stiffness coefficient		<i>C</i> ₃₃ ^D	10 ¹⁰ N/m ²		16.6	
Mechanical quality factor	Q_m			2000		
Temperature stability						
Temperature coefficient of ε^{T}_{33}						
(in the range -20 °C to +125 °C	ΤΚ ε ₃₃	10 ⁻³ /K		3		
Time stability (relative change of the parameter per decade of time in %)						
Relative permittivity	Cε	%				
Coupling factor	Cr					

	Material designation	General description of the material properties "Hard"-PZT	Classifica dance wit	tion in accor- th EN 50324-1	ML-Standard DOD-STD-1376A		
	PIC181	Material: Modified Lead Zirconate-Lead Titanate Characteristics: Extremely high mechanical quality factor, good temperature and time constancy of the dielectric and elastic values Suitable for: High-power acoustic applications, applications in resonance mode	100		I		
Données d'entrée du modèle numérique				D elect or di displ	electric flux density, or dielectric displacement		
$\rho = 7.8 \text{ g/cm}^3$					nechanical stress		
Perméabilité relative à T (contrainte mécanique) constante				E elect	electric field		
	○ Dans I	a direction de polarisation $\frac{\varepsilon_{33}^T}{\varepsilon_{33}} = 1200$		S mech	S mechanical strain		
	• Dans les direction de polarisation $\frac{\varepsilon_0}{\varepsilon_0} = 1200$ • Dans les directions perpendiculaire à la polarisation $\frac{\varepsilon_{11}^T}{\varepsilon_0} = 1500$				d piezoelectric charge coefficient		
					\mathcal{E}^{T} dielectric permittivity (for $T = \text{constant}$)		
Propriétés électromécaniques : Coefficient de charge piézo • $d_{31} = -120e^{-12}$ C/N • $d_{33} = 265 e^{-12}$ C/N • $d_{15} = 475e^{-12}$ C/N					s ^E elastic coefficient (for E = constant) (Z) 3		
F	Propriétés r $\circ S_{11}^{\varepsilon} =$ $\circ S_{33}^{\varepsilon} =$	nécaniques => Coefficient de souplesse : 11.8 e^{-12} m ² /N 14.2 e^{-12} m ² /N		P (X) ¹	6 5 2(Y)		
	On ne tier pertes mé	nt pas compte des pertes di-électriques, des écaniques.		Fig. 5. O coordina describe of a pole ceramic	rthogonal ate system to the properties ad piezoelectric . The polarization		

vector is parallel to the

3 (Z)-axis.

PZT FEM Simulation : system, dimensions

Temporal simulation, Comsol Multiphysics Axisymetric model around r = 0

<u>Aluminium plate :</u>

- Linear elastic material
- Thikness 2 mm
- Length 2 m

<u>PZT transducer :</u>

- Piézoélectric material
- Properties : PI PIC181
 8 given data / 10 needed
- Radius 15 mm
- Thikness 2,13 mm

Comparison : PZT, 100 kHz

32

Comparison ponctuelle : PZT, 100 kHz

Comparison ponctuelle : PZT, 100 kHz

Comparaison ponctuelle : PZT, 100 kHz

Comparison : PZT, 50 kHz

Comparison ponctuelle : PZT, 50 kHz

Comparison ponctuelle : PZT, 50 kHz

Comparison ponctuelle : PZT, 50 kHz

y [m]

Comparison : PZT, 20 kHz

Comparison ponctuelle : PZT, 20 kHz

Comparison ponctuelle : PZT, 20 kHz

Comparison ponctuelle : PZT, 20 kHz

