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Context

A Cable-Driven Parallel Robot (CDPR) consists of a Moving-Platform (MP) connected to a base frame using
cables

Drawbacks

◮ Limited rotations

◮ Cable collisions

Advantages

◮ High payload and dynamic capabilities

◮ Large workspace

Applications

◮ Handling

◮ Large-scale 3D printing

base frame

motorized
winch

Moving-Platform

pulley

cable

Figure 1: Main components of CRAFT
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Cable-Driven Parallel Robots (CDPRs)
Example

Figure 2: CAROCA prototype, IRT Jules Verne
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https://www.youtube.com/watch?v=h3u1InXUhz8
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Cable-Driven Parallel Robots (CDPRs)
Applications

(a) Handling [1]

(b) Assembly [2]

(c) Printing [3]
(d) Heavy payloads [4]

Figure 3: Industrial applications
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Context

Goal
Develop agile CDPRs able to safely interact with
human users

◮ Share the workspace with operators

◮ Physically interact with operators

ANR-CRAFT project consortium

Work done

◮ CDPR elasto-geometric modelling, parametric
and sensitivity analysis

◮ Definition of collaborative control strategies

◮ User experiment with collaborative CDPRs

CRAFT

Figure 4: Targeted paradigm
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Collaborative pick-and-place operations
Paradigm

Task and context
Pick-and-place operation in collaboration

1. Co-existence

2. Collaboration

Goals

1. Evaluate the human robot interaction
on a shared task

2. Develop safety strategy

3. Account for CDPR stiffness

4. Enhance transparency
Figure 5: Collaborative pick-and-place paradigm representation
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Collaborative pick-and-place operations
CU3 hybrid controller

Reference trajectory

A reference trajectory : x0, t0 and ṫ0

Error along the trajectory:

ex = x0 − x (1)

et = t0 − t (2)

eṫ = ṫ0 − ṫ (3)

Reference trajectory impedance:

wr = Kvex + Dvet + Mveṫ (4)

moving-platform

handle

Pa PbP

Figure 6: Reference trajectory

Admittance
Human wrench exerted on the handle: wh

6 dof
force sensor

handle

moving
platform

cable tension sensor

cables

Figure 7: Force sensor of CRAFT
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Collaborative pick-and-place operations
Hybrid controller

Reference trajectory

Reference trajectory desired acceleration:

ṫh = Mhwh (5)

Saturation of the acceleration:

ṫh =

−αṫmax

αṫmax

ṫh (6)

User admittance
User admittance desired acceleration:

ṫr = Mrwr (7)

Saturation of the acceleration:

ṫr =

−(1−α)ṫmax

(1−α)ṫmax

ṫr (8)

Moving Platfrom desired acceleration

ṫd = ṫr + ṫh (9)
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Collaborative pick-and-place operations
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Figure 8: Hybrid control scheme for co-manipulation with a CDPR
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Collaborative pick-and-place operations
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Figure 9: Hybrid control scheme for co-manipulation with a CDPR
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Collaborative pick-and-place operations
Compliant trajectory performance

Figure 10: Compliant trajectory performance
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https://uncloud.univ-nantes.fr/index.php/s/MRsZMLxo6PoGE4H
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Collaborative pick-and-place operations
Interaction during a compliant trajectory

Figure 11: Interaction during a compliant trajectory
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https://uncloud.univ-nantes.fr/index.php/s/HXJED9wndnjSsnf
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Collaborative pick-and-place operations
Interaction with a stiff environment

Figure 12: Interaction with a stiff environment
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https://uncloud.univ-nantes.fr/index.php/s/68woJRTF4gatidM
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UC1 : Teleoperation with a suspended 3 cables CDPR

UC1 : Teleoperation with a suspended 3 cables CDPR
UC1 paradigm

Context
Suspended Cable-Driven Parallel Robot with 3 cables
in a teleoperation task

force/torque
sensor

cables

table

HMI

moving
platform

Figure 13: Tele-operated CDPR

Figure 14: First Use Case (UC1) - Teleoperation of a platform with three
cables
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UC2 : Comanipulation with a suspended 8 cables CDPR

UC2 : Comanipulation with a suspended 8 cables CDPR
UC2 paradigm

Context
Suspended Cable-Driven Parallel Robot with 8 cables
in a co-manipulation task

force/torque
sensor

cables

HMI

moving
platform

Figure 15: CDPR in co-manipulation

Figure 16: Second Use Case - (UC2) - Co-manipulation of a platform with
eight cables
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UC1 & UC2 : a comparative user-experiment

UC1 & UC2 : a comparative user-experiment
Experiment description

Goal

◮ Compare the user performance on the task
completion on both configurations

◮ Analyse the performance evolution

◮ Identify performance evolution models

Task
Aiming task with three air-inflated cones (A, B and C)

User experiment

◮ 49 participants
◮ UC1 : 30 part. (mean 37.17 years)
◮ UC2 : 19 part. (mean 28.37 years)

force
sensor

handle

tip

moving
platform

targets

Figure 17: User experiment setup
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UC1 & UC2 : a comparative user-experiment

UC1 & UC2 : a comparative user-experiment
Performance criteria definition

Performance criteria (dependant variables)

◮ Time (Completion time of segments)

◮ Deviation (Mean of the segment deviation)

◮ Transparency

Independant variables

◮ PerformedPath

◮ PathType

Transparency index

µ = vT
n fhn (10)

and
ν = 1 − µ (11)

A

B

d

P

fh

tA

tB

vd

Figure 18: Ideal path (black), end-effector tip path during user
experiment (orange)
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UC1 & UC2 : a comparative user-experiment

UC1 & UC2 : a comparative user-experiment
UC1 : Teleoperation with a suspended 3 cables CDPR

Figure 19: Participant on the UC1 experiment
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https://uncloud.univ-nantes.fr/index.php/s/KDCGjFZLCkoDZJd
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UC1 & UC2 : a comparative user-experiment

UC1 & UC2 : a comparative user-experiment
UC2 : Teleoperation with a suspended 3 cables CDPR

Figure 20: Participant on the UC2 experiment
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https://uncloud.univ-nantes.fr/index.php/s/TLQPta2rCKAGLY5
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UC1 & UC2 : a comparative user-experiment

UC1 & UC2 : a comparative user-experiment
Analysing the performance criteria separately

Table 1: Overall performance of UCs

Time [s] Deviation [mm] Transparency [-]
Mean SD Mean SD Mean SD

UC1 18.04 5.47 74.48 26.23 0.60 0.08
UC2 8.91 3.19 28.31 11.04 0.77 0.12

Results

◮ More variability for Time and Deviation in UC1

◮ Lower Time, Deviation and Transparency in UC2
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Figure 21: Participant performance comparison UC1/UC2,
each circle is a UC1 participant and each triangle is a UC2
participant
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UC1 & UC2 : a comparative user-experiment

UC1 & UC2 : a comparative user-experiment
Comparing the training effect of UCs

Linear regression

y = a0 + a1PerformedPath (12)

Table 2: Linear regression coefficients of performance criteria for each UC,
∗∗ denotes a p-value inferior to 0.01, ∗ denotes a p-value between 0.01 and
0.05 and n.s. indicates a p-value superior to 0.05

Time Deviation Transparency
a0 a1 a0 a1 a0 a1

UC1 21.979 -0.214 ∗∗ 0.082 -5.086e-04 ∗∗ 0.602 1.204e-04 n.s.
UC2 10.027 -0.033 ∗∗ 0.032 -8.746e-05 ∗∗ 0.715 1.005e-03 ∗∗

Results

◮ Stronger progression in UC1

◮ Transparency decreasing in UC2
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Figure 22: Plot of linear regression of all
observations of performance criteria for each UC,
blue scatter data are the observed segment and
solid red line plot are linear model
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Conclusion

Challenges addressed during the thesis

◮ Elasto-geometric modelling of CDPR
◮ Accounting for actuation element geometry
◮ Accounting for elastic cable elongation
◮ Sensitivity and parametric analysis of models

◮ Development of collaborative control strategies
◮ Sharing of human and robot workspace
◮ Co-manipulation of CDPRs

◮ Performance assessment of pHRI trough
user-experiment

◮ Performance evolution during interaction
◮ Studying the learning effect during interactions
◮ Modelling the human behaviour during

interactions

Figure 23: Experiment led during the thesis
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