Cable-Driven Parallel Robots for agile operation in manufacturing facilities

Marceau Métillon¹

Direction de thèse : Stéphane CARO¹, Camilo CHARRON^{1,2}, Kévin SUBRIN¹

Journée Des Doctorants CETIM 2023 Senlis

17 janvier 2023

¹ Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
² Université de Rennes 2, Rennes, France

Context	
0000	

Context

A Cable-Driven Parallel Robot (CDPR) consists of a Moving-Platform (MP) connected to a base frame using cables

Drawbacks

- Limited rotations
- Cable collisions

Advantages

- High payload and dynamic capabilities
- Large workspace

Applications

- Handling
- Large-scale 3D printing

Figure 1: Main components of CRAFT

Context 0000

Collaborative hybrid controller for CDPR 00000000

User experiments

Cable-Driven Parallel Robots (CDPRs)

Figure 2: CAROCA prototype, IRT Jules Verne

Cable-Driven Parallel Robots for agile operation in manufacturing facilities

Cable-Driven Parallel Robots (CDPRs)

(b) Assembly [2]

(c) Printing [3]

Figure 3: Industrial applications

(d) Heavy payloads [4]

Context

Goal

Develop agile CDPRs able to safely interact with human users

- Share the workspace with operators
- Physically interact with operators

ANR-CRAFT project consortium

Work done

- CDPR elasto-geometric modelling, parametric and sensitivity analysis
- Definition of collaborative control strategies
- User experiment with collaborative CDPRs

Collaborative pick-and-place operations Paradigm

Task and context

Pick-and-place operation in collaboration

- 1. Co-existence
- 2. Collaboration

Goals

- 1. Evaluate the human robot interaction on a shared task
- 2. Develop safety strategy
- 3. Account for CDPR stiffness
- 4. Enhance transparency

Figure 5: Collaborative pick-and-place paradigm representation

Context
0000

Collaborative pick-and-place operations

CU3 hybrid controller

Reference trajectory

A reference trajectory : $\mathbf{x}_0, \, \mathbf{t}_0 \,$ and $\dot{\mathbf{t}}_0$ Error along the trajectory:

$$\mathbf{e}_x = \mathbf{x}_0 - \mathbf{x} \tag{1}$$

$$\mathbf{e}_t = \mathbf{t}_0 - \mathbf{t} \tag{2}$$

$$\mathbf{e}_{t} = \dot{\mathbf{t}}_{0} - \dot{\mathbf{t}} \tag{3}$$

Reference trajectory impedance:

$$\mathbf{w}_r = \mathbf{K}_v \mathbf{e}_x + \mathbf{D}_v \mathbf{e}_t + \mathbf{M}_v \mathbf{e}_t$$

Figure 6: Reference trajectory

Admittance

Human wrench exerted on the handle: \mathbf{w}_h

Figure 7: Force sensor of CRAFT

M. Métillon

Cable-Driven Parallel Robots for agile operation in manufacturing facilities

(4)

Collaborative pick-and-place operations

Hybrid controller

Reference trajectory

Reference trajectory desired acceleration:

$$\dot{\mathbf{t}}_h = \mathbf{M}_h \mathbf{w}_h$$
 (5)

Saturation of the acceleration:

$$\dot{\mathbf{t}}_{h} = \int_{-\alpha \mathbf{t}_{max}}^{\alpha \mathbf{t}_{max}} \dot{\mathbf{t}}_{h}$$
(6)

User admittance

User admittance desired acceleration:

$$\mathbf{x}_r = \mathbf{M}_r \mathbf{w}_r$$
 (7)

Saturation of the acceleration:

$$\dot{\mathbf{t}}_{r \neq} = \int_{-(1-\alpha)\dot{\mathbf{t}}_{max}}^{(1-\alpha)\dot{\mathbf{t}}_{max}} \dot{\mathbf{t}}_{r}$$
(8)

Moving Platfrom desired acceleration

$$\dot{\mathbf{t}}_{d} = \dot{\mathbf{t}}_{r\,\prime} + \dot{\mathbf{t}}_{h\,\prime} \tag{9}$$

Figure 8: Hybrid control scheme for co-manipulation with a CDPR

Collaborative pick-and-place operations

Figure 9: Hybrid control scheme for co-manipulation with a CDPR

Context
0000

Collaborative hybrid controller for CDPR

User experiments

Collaborative pick-and-place operations

Compliant trajectory performance

Figure 10: Compliant trajectory performance

Collaborative pick-and-place operations

Interaction during a compliant trajectory

Figure 11: Interaction during a compliant trajectory

Collaborative pick-and-place operations

Interaction with a stiff environment

Figure 12: Interaction with a stiff environment

UC1 : Teleoperation with a suspended 3 cables CDPR $_{\text{UC1 paradigm}}$

Context

Suspended Cable-Driven Parallel Robot with 3 cables in a teleoperation task

Figure 13: Tele-operated CDPR

Figure 14: First Use Case (UC1) - Teleoperation of a platform with three cables

UC2 : Comanipulation with a suspended 8 cables CDPR UC2 paradigm

Context

Suspended Cable-Driven Parallel Robot with 8 cables in a co-manipulation task

Figure 15: CDPR in co-manipulation

Figure 16: Second Use Case - (UC2) - Co-manipulation of a platform with eight cables

UC1 & UC2 : a comparative user-experiment

Experiment description

Goal

- Compare the user performance on the task completion on both configurations
- Analyse the performance evolution
- Identify performance evolution models

Task

Aiming task with three air-inflated cones (A, B and C)

User experiment

- ▶ 49 participants
 - UC1 : 30 part. (mean 37.17 years)
 - UC2 : 19 part. (mean 28.37 years)

Context
0000

Transparency index

(10)

(11)

B

UC1 & UC2 : a comparative user-experiment

Performance criteria definition

Figure 18: Ideal path (black), end-effector tip path during user experiment (orange)

Context
0000

UC1 & UC2 : a comparative user-experiment

UC1 : Teleoperation with a suspended 3 cables CDPR

Figure 19: Participant on the UC1 experiment

Context
0000

UC1 & UC2 : a comparative user-experiment

UC2 : Teleoperation with a suspended 3 cables CDPR

Figure 20: Participant on the UC2 experiment

UC1 & UC2 : a comparative user-experiment

Analysing the performance criteria separately

Table 1: Ov	verall perf	ormance	of	UCs
-------------	-------------	---------	----	-----

	Time [s]		Deviation [mm]		Transparency [-]	
	Mean	SD	Mean	SD	Mean	SD
UC1	18.04	5.47	74.48	26.23	0.60	0.08
UC2	8.91	3.19	28.31	11.04	0.77	0.12

Results

- More variability for *Time* and *Deviation* in UC1
- Lower Time, Deviation and Transparency in UC2

Figure 21: Participant performance comparison UC1/UC2, each circle is a UC1 participant and each triangle is a UC2 participant

UC1 & UC2 : a comparative user-experiment

Comparing the training effect of UCs

Linear regression

 $y = a_0 + a_1$ PerformedPath (12)

Table 2: Linear regression coefficients of performance criteria for each UC, ** denotes a p-value inferior to 0.01, * denotes a p-value between 0.01 and 0.05 and n.s. indicates a p-value superior to 0.05

	Time		Deviation		Tr	ansparency
	a_0	a_1	a_0	a_1	a_0	a_1
UC1 UC2	21.979 10.027	-0.214 ** -0.033 **	0.082 0.032	-5.086e-04 ** -8.746e-05 **	0.602 0.715	1.204e-04 n.s. 1.005e-03 **

Results

- Stronger progression in UC1
- Transparency decreasing in UC2

Figure 22: Plot of linear regression of all observations of performance criteria for each UC, blue scatter data are the observed segment and solid red line plot are linear model

Conclusion

Challenges addressed during the thesis

- Elasto-geometric modelling of CDPR
 - Accounting for actuation element geometry
 - Accounting for elastic cable elongation
 - Sensitivity and parametric analysis of models
- Development of collaborative control strategies
 - Sharing of human and robot workspace
 - Co-manipulation of CDPRs
- Performance assessment of pHRI trough user-experiment
 - Performance evolution during interaction
 - Studying the learning effect during interactions
 - Modelling the human behaviour during interactions

Figure 23: Experiment led during the thesis

Cable-Driven Parallel Robots for agile operation in manufacturing facilities

Marceau Métillon¹

Direction de thèse : Stéphane CARO¹, Camilo CHARRON^{1,2}, Kévin SUBRIN¹

Journée Des Doctorants CETIM 2023 Senlis

17 janvier 2023

¹ Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
² Université de Rennes 2, Rennes, France