

Jacques Ferhat Simulations d'écoulements cavitants instationnaires avec le code bi-fluide neptune_cfd

Etape vers une prévision numérique de l'érosion de cavitation

<u>Co-directeur</u>: Mimouni S.

<u>Tuteur</u>: Archer A. – <u>Directrice de thèse (LEGI)</u>:Fortes-Patella R. - <u>Référent CETIM</u>: Aiouaz T.

Sommaire

- Introduction
 - Le phénomène de cavitation
 - L'érosion de cavitation
- Présentation du cas expérimental : NACA 65012
- Modélisation physique et conditions numériques
- Résultats des simulations numériques
 - Visualisations qualitatives
 - Résultats quantitatifs
- Prévision de l'intensité de cavitation
- Conclusion et perspectives

Introduction : définition

- La cavitation est le changement de phase de vaporisation causé par diminution de la pression
- Causes : restrictions géométriques, augmentation de la vitesse, fluctuation de la pression dans le système, ...
- Peut apparaitre dans tous les systèmes hydrauliques !

L'érosion de cavitation

Enjeux et déroulement de la thèse

- Les essais en cavitation sont réalisés pour une géométrie → €
- La cavitation est multiphysique : aspect fluide et solide Et multi échelles

Cela motive l'utilisation de la CFD:

- 2014-2017: 1^{ère} thèse avec Code_Saturne
- 2020-2023: 2^e thèse avec neptune_cfd

Motivations de l'utilisation de neptune_cfd :

- améliorer la prévision hydrodynamique
- quantifier l'effet de la nature du fluide
- meilleure prévision de l'érosion

Difficultés numériques liées à la cavitation:

- (très) basse pression
- forts gradients, forte vaporisation
- instationnaire, fréquence élevée \rightarrow petit pas de temps

<u>Démarche</u>:

Validation en 2 temps:

- hydrodynamique
- érosion

Cas expérimental:

NACA 65012

Conditions expérimentales :

• 4 vitesses d'entrée (15, 20, 25, 30 m/s)

StedF

- 3 tailles de poche (20%, 30%, 40%) ٠
- 2 angles d'incidence (4°,6°) ٠

(cetim

Legi

Tunnel hydrodynamique de l' EPFL, [Pereira, 1997]

$$\sigma = \frac{P_{in} - P_{vap}}{0.5 \,\rho_l V_{in}^2}$$

5.0,

Evolution de la modélisation physique

code**saturne 🕑 neptune**_cfd

Approche précédente: Code_Saturne [Leclercq, 2017]

- modèle 1-fluide homogène
- fluide mixte: $\rho = \alpha \rho_v + (1 \alpha) \rho_l$
- pas d'équation d'énergie
- incompressible
- turbulence: k- ε linéaire avec correction de Reboud
- propriétés physiques constantes
- terme source de masse : Merkle (P-Psat)

Présentement : neptune_cfd [Mimouni, 2008]

- Bi-fluide à une pression
- 6 équations: équilibre en pression
- équation d'énergie
- faiblement compressible
- Turbulence liquide: k-ε linéaire
- tables thermodynamiques (Cathare)
- terme source d'énergie en enthalpie

Modélisation physique

Conservation de la masse:

$$\frac{\partial \alpha_l \rho_k}{\partial t} + div(\alpha_k \rho_k \overline{U}_k) = (\Gamma_k)$$

Conservation de la quantité de mouvement:

$$\frac{\partial \alpha_k \rho_k U_k}{\partial t} + \overline{div} (\overline{U}_k \otimes \alpha_k \rho_k \overline{U}_k) = \overline{div} \left(\alpha_k \overline{\overline{\tau}}_k + \overline{\overline{\Sigma}}_k \right) - \underline{\alpha_k} \overline{\nabla} P + \alpha_k \rho_k \overline{g} + \left(\overline{M}_k^I + \Gamma_k \overline{U}_k^I \right) \right)$$

$$\frac{\partial \alpha_k \rho_k H_k}{\partial t} + div(\alpha_k \rho_k H_k \overline{U}_k) = \alpha_k \frac{\partial}{\partial t} P + \alpha_k \rho_k \overline{g}. \overline{U}_k - div(\alpha_k Q_k) + div(\alpha_k \overline{\tau}_k. \overline{U}_k) + \overline{M}_k^I. \overline{U}_{ki} \notin Q_k$$

Paramètres numériques:

- neptune 6.0.1 (mais aussi 4.3 , 6.1 et 7.0)
- modèle dispersé
- diamètre de bulle 5. $10^{-5} m$
- solveur « vitesse relative »
- schémas
 - spatial SOLU (O2)
 - temporel Euler implicite (O1)

(pour chaque phases k)

cetim

Legi

Terme source d'échange d'énergie: $Q_k = \Gamma_k H_k^{sat} + Q'_l \iff \Gamma_l = -\Gamma_v = \frac{Q'_l + Q'_v}{H_v^{sat}(P) - H_l^{sat}(P)} \longrightarrow \text{A modéliser}$

Nouveau modèle dédié à la cavitation: Terme source d'échange d'énergie interfacial

Terme source exprimé comme l'écart à l'enthalpie de saturation :

Si $(H_l > H_l^{sat})$: **Cavitation**, l'eau liquide est vaporisée (a)

$$Q_l' = \frac{f(\alpha_l, \alpha_v)}{\tau} (H_l^{sat} - H_l) < 0$$

Si $(H_v < H_v^{sat})$: Vapeur sous refroidie et **condense** (b)

$$Q'_{\nu} = \frac{f(\alpha_l, \alpha_{\nu})}{\tau} (H_{\nu}^{sat} - H_{\nu}) > 0$$

Si $(H_v > H_v^{sat})$: Vapeur relaxée à saturation (c)

$$Q'_{\nu} = \frac{f(\alpha_l, \alpha_{\nu})}{\tau} (H_{\nu}^{sat} - H_{\nu}) < 0$$

Avec $f(\alpha_l, \alpha_v)$ fonction de pondération des phases $\tau_k = \tau_l = \tau_v$ paramètre de relaxation fixé à 10^{-4} s

Maillage et conditions aux limites

Maillage	Cellules à la corde [-]	Hauteur de la 1 st cellule [m]	Total des cellules [-]
Grossier	59	$1 \ 10^{-4}$	15.5 10 ³
Moyen	92	5 10 ⁻⁵	21.7 10 ³
Fin	177	5 10 ⁻⁵	89.7 10 ³

- 3D : x200 en envergure
- 4° : même paramètres 2D
 - en 3D, 201 cellules en envergure

Calculs saturne : Maillage grossier Calculs saturne 3D : x60 en envergure

Initialisation et stratégie de calcul Initialisation: $P_0 = P_{ref}$, $V_0 = V_{ref}$ *Condition aux limites*: *P*_{out} rampe variant dans le temps $P_{out} = P_{ref} - \Delta \dot{P}.t$ $P_{out} = P_{ref}$ $P_{out} = Cnst$ Cavitation développée $V_{in} = V_{ref}$ Mono Diphasique convergence t= 1s t=0,15s t=0,2s t=0s t=0,25s Activation du terme source Variables convergées Incidence Longueur **6°** 40% La fréquence dépend de la longueur de la poche qui dépend elle-même de la pression vitesses sigma 15 1,59 Longueur Ajuster Pout Vitesse V_{in} σ numérique 20 1,56 de poche 25 1,54 1,51 30 (cetim Legi

Résultats des simulations numériques

post-processing

Simulation d'une poche fixe: Calculs à 4° d'incidence

Résultats des simulations numériques : 4°

cetim

Legi

- ✓ Poche fixe mais instationnaire capturée en bi-fluide
- ✓ Bon accord expérimental pour σ pour toutes les tailles de poche et vitesses
- × Désaccord pente $\sigma(v)$

Résultats des simulations numériques : 4°

Coefficients de pression

- Bon accord expérimental sur la pression moyenne et les écarts types.
- ✓ Aux différentes vitesses et longueurs de poche
- Capture des bonnes zones de de gradients de pression
- Modèle validé sur la poche fixe

Simulation d'une poche avec lâchers: Calculs à 6° d'incidence

Cavitation: comportement périodique et instationnaire

(2D à Vin=15 m/s – Pout=1,75 bar)

Visualisations qualitatives

Animation :
$$3D - v15 - sigma = 1,59$$

Visualisations qualitatives

Résultats des simulations numériques 6°

Flow

	Expérience		neptune			
Vin [m/s]	fexp [Hz]	σ exp [-]	f [Hz]	err [%]	σ[-]	err [%]
15	100	1,59	109	9	1,59	0
20	145	1,60	138	1,4	1,56	2,5
25	190	1,62	173	8,9	1,54	4,9
30	230	1,63	227	3,2	1,51	7,4

cetim

Legi

Diagramme spatio-temporel à Vin=15 m/s

✓ Bon accord expérimental 2D et 3D

- ✓ Meilleur accord pour σ
- L'erreur sur σ augmente à 25 et 30 m/s mais reste acceptable

Modèle validé sur le lâché

Partie 2: Prévision de l'intensité de cavitation

Modèle d'intensité de cavitation

Puissance potentielle

Intensité de cavitation

Grandeur indicative du chargement fluide sur la paroi du foil

Conclusions :

Simulation de la cavitation avec un code bi-fluide :

- Proposition et validation d'un modèle de changement de phase pour la cavitation
- \checkmark Bon comportement hydrodynamique:
 - ✓ Qualitatif : formes, structures caractéristiques
 - ✓ Quantitatif : Cp, σ , fréquences
 - ✓ Sur deux topologies différentes
- Modèle d'intensité de cavitation:
 - ✓ Bon accord sur les tendances générales
 - Manque de précision sur la localisation à 6°
 - Amélioration à apporter au modèle d'intensité de cavitation

Perspectives :

- Simulations en sodium
- Simulations sur une pompe
- Amélioration des modèles

Merci pour votre attention

Des questions ?

To be continued ...

Intensité de cavitation

Références:

cetim

- [Pereira, 1998] F. Peirera, *Prédiction de l'érosion de cavitation: approche énergetique*, PhD thesis, EPFL, 1997 Pereira F., Avellan F. and Dupont P., 1998. *Prediction of cavitation erosion : an energy approach*, Journal of Fluids Engineering 120 719-27
- [Leclercq, 2017] C. Leclercq, 2017. Simulation numérique du chargement mécanique en paroi généré par les écoulements cavitants, pour application à l'usure par cavitation des pompes centrifuges, PhD thesis, Université Grenoble Alpes
- [Mimouni, 2008] Mimouni, S., Boucker, M., Lavieville, J., Guelfi, A., Bestion, D., 2008. *Modelling and computation of cavitation and boiling bubbly flows with the NEPTUNE CFD code*, Nuclear Engineering and Design, 238(3):680–692.
- [Fortes-Parella, 2013] R. Fortes Patella, A. Archer, and C. Flageul, 2013. Numerical and experimental investigations on cavitation erosion. IOP Conference Series: Earth and Environmental Science, 15, pp. 2013– (2012)